Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases

被引:479
作者
Hong, SP
Leiper, FC
Woods, A
Carling, D
Carlson, M
机构
[1] Columbia Univ, Dept Genet & Dev, New York, NY 10032 USA
[2] Columbia Univ, Dept Microbiol, New York, NY 10032 USA
[3] Univ London Imperial Coll Sci Technol & Med, Cellular Stress Grp, MRC, Ctr Clin Sci, London W12 0NN, England
关键词
D O I
10.1073/pnas.1533136100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Snf1/AMP-activated protein kinase (AMPK) family plays fundamental roles in cellular responses to metabolic stress in eukaryotes. In humans, AMPK regulates lipid and glucose metabolism and has been implicated in such metabolic disorders as diabetes and obesity and in cardiac abnormalities. Snf1 and AMPK are the downstream components of kinase cascades, but the upstream kinase(s) have remained elusive. We have here identified three yeast kinases, Pak1p, Tos3p, and Elm1p, that activate Snf1 kinase in vivo. Triple deletion of the cognate genes causes a Snf(-) mutant phenotype and abolishes Snf1 catalytic activity. All three kinases phosphorylate recombinant Snf1p on the activation-loop threonine. Moreover, Tos3p phosphorylates mammalian AMPK on the equivalent residue and activates the enzyme, suggesting functional conservation of the upstream kinases between yeast and mammals. We further show that the closely related mammalian LKB1 kinase, which is associated with Peutz-Jeghers cancer-susceptibility syndrome, phosphorylates and activates AMPK in vitro. Thus, the identification of the yeast upstream kinases should facilitate identification of the corresponding, physiologically important mammalian upstream kinases.
引用
收藏
页码:8839 / 8843
页数:5
相关论文
共 43 条
[1]   Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy [J].
Arad, M ;
Benson, DW ;
Perez-Atayde, AR ;
McKenna, WJ ;
Sparks, EA ;
Kanter, RJ ;
McGarry, K ;
Seidman, JG ;
Seidman, CE .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (03) :357-362
[2]  
Ashrafi K, 2000, GENE DEV, V14, P1872
[3]   REGULATION OF DIMORPHISM IN SACCHAROMYCES-CEREVISIAE - INVOLVEMENT OF THE NOVEL PROTEIN-KINASE HOMOLOG ELM1P AND PROTEIN PHOSPHATASE 2A [J].
BLACKETER, MJ ;
KOEHLER, CM ;
COATS, SG ;
MYERS, AM ;
MADAULE, P .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5567-5581
[4]  
Bouquin N, 2000, J CELL SCI, V113, P1435
[5]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180
[6]   Glucose depletion causes haploid invasive growth in yeast [J].
Cullen, PJ ;
Sprague, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13619-13624
[7]   The roles of bud-site-selection proteins during haploid invasive growth in yeast [J].
Cullen, PJ ;
Sprague, GF .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (09) :2990-3004
[8]   TISSUE DISTRIBUTION OF THE AMP-ACTIVATED PROTEIN-KINASE, AND LACK OF ACTIVATION BY CYCLIC-AMP-DEPENDENT PROTEIN-KINASE, STUDIED USING A SPECIFIC AND SENSITIVE PEPTIDE ASSAY [J].
DAVIES, SP ;
CARLING, D ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :123-128
[9]  
ESTRUCH F, 1992, GENETICS, V132, P639
[10]   Functional organization of the yeast proteome by systematic analysis of protein complexes [J].
Gavin, AC ;
Bösche, M ;
Krause, R ;
Grandi, P ;
Marzioch, M ;
Bauer, A ;
Schultz, J ;
Rick, JM ;
Michon, AM ;
Cruciat, CM ;
Remor, M ;
Höfert, C ;
Schelder, M ;
Brajenovic, M ;
Ruffner, H ;
Merino, A ;
Klein, K ;
Hudak, M ;
Dickson, D ;
Rudi, T ;
Gnau, V ;
Bauch, A ;
Bastuck, S ;
Huhse, B ;
Leutwein, C ;
Heurtier, MA ;
Copley, RR ;
Edelmann, A ;
Querfurth, E ;
Rybin, V ;
Drewes, G ;
Raida, M ;
Bouwmeester, T ;
Bork, P ;
Seraphin, B ;
Kuster, B ;
Neubauer, G ;
Superti-Furga, G .
NATURE, 2002, 415 (6868) :141-147