The roles of bud-site-selection proteins during haploid invasive growth in yeast

被引:62
作者
Cullen, PJ [1 ]
Sprague, GF [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
关键词
D O I
10.1091/mbc.E02-03-0151
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In haploid strains of Saccharormyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, AxI1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.
引用
收藏
页码:2990 / 3004
页数:15
相关论文
共 69 条
[1]   ROLE OF YEAST INSULIN-DEGRADING ENZYME HOMOLOGS IN PROPHEROMONE PROCESSING AND BUD SITE SELECTION [J].
ADAMES, N ;
BLUNDELL, K ;
ASHBY, MN ;
BOONE, C .
SCIENCE, 1995, 270 (5235) :464-467
[2]   Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth [J].
Ahn, SH ;
Acurio, A ;
Kron, SJ .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (10) :3301-3316
[3]   Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites [J].
Amberg, DC ;
Zahner, JE ;
Mulholland, JW ;
Pringle, JR ;
Botstein, D .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (04) :729-753
[4]  
Barr R. S., 1995, Journal of Heuristics, V1, P9, DOI 10.1007/BF02430363
[7]   Glucose repression in yeast [J].
Carlson, M .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) :202-207
[8]   PATTERNS OF BUD-SITE SELECTION IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
CHANT, J ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1995, 129 (03) :751-765
[9]   YEAST BUD5, ENCODING A PUTATIVE GDP-GTP EXCHANGE FACTOR, IS NECESSARY FOR BUD SITE SELECTION AND INTERACTS WITH BUD FORMATION GENE BEM1 [J].
CHANT, J ;
CORRADO, K ;
PRINGLE, JR ;
HERSKOWITZ, I .
CELL, 1991, 65 (07) :1213-1224
[10]   ROLE OF BUD3P IN PRODUCING THE AXIAL BUDDING PATTERN OF YEAST [J].
CHANT, J ;
MISCHKE, M ;
MITCHELL, E ;
HERSKOWITZ, I ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1995, 129 (03) :767-778