Windows of given area with minimal heat diffusion

被引:30
作者
Denzler, J [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
D O I
10.1090/S0002-9947-99-02207-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded Lipschitz domain Omega, we show the existence of a measurable set D subset of partial derivative Omega of given area such that the first eigenvalue of the Laplacian with Dirichlet conditions on D and Neumann conditions on partial derivative Omega \ D becomes minimal. If Omega is a ball, D will be a spherical cap.
引用
收藏
页码:569 / 580
页数:12
相关论文
共 18 条
[1]  
Adams R, 1978, Sobolev spaces
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]  
Brascamp H.J., 1974, J FUNCT ANAL, V17, P227, DOI [10.1016/0022-1236(74)90013-5, DOI 10.1016/0022-1236(74)90013-5]
[4]   Bounds for the heat diffusion through windows of given area [J].
Denzler, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (02) :405-422
[5]  
FEDERER H, 1969, GRUNDLEHREN, V153
[6]  
GILBARG D, SPRINGER GRUNDLEHREN, V224
[7]   THE NEUMANN PROBLEM ON LIPSCHITZ-DOMAINS [J].
JERISON, DS ;
KENIG, CE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 4 (02) :203-207
[8]  
KENIG C, 1994, CBMS, V83
[9]   THE NEUMANN PROBLEM FOR ELLIPTIC-EQUATIONS WITH NONSMOOTH COEFFICIENTS [J].
KENIG, CE ;
PIPHER, J .
INVENTIONES MATHEMATICAE, 1993, 113 (03) :447-509
[10]  
Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E