Bounds for the heat diffusion through windows of given area

被引:12
作者
Denzler, J [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-80333 Munich, Germany
关键词
D O I
10.1006/jmaa.1997.5716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the lowest eigenvalue for the Laplacian in a given Lipschitz domain under mixed boundary conditions: Dirichlet in a subset of the boundary (noninsulated window), Neumann otherwise. This eigenvalue can be interpreted as heat leakage rate due to diffusion. We give an explicit calculation for a model problem, a rigorous lower bound that depends only on the area, but not on the geometry of the window. This bound confirms the observations from the model problem. Finally, we show that no nontrivial upper bound is possible; i.e., any small area for the window being prescribed, its geometry can be made bad enough to cause heat leak rates arbitrarily-close to the ones for no insulation anywhere. The most important techniques are the Aronszajn-Weinstein method of intermediate variational problems and the Gaussian upper bounds for the heat kernel by E. B. Davies. (C) 1998 Academic Press.
引用
收藏
页码:405 / 422
页数:18
相关论文
共 17 条
[1]  
Adams R, 1978, Sobolev spaces
[2]  
[Anonymous], 1982, VORLESUNGEN FUNKTION
[3]  
[Anonymous], 1964, Handbook of mathematical functions
[4]  
[Anonymous], 1966, VARIATIONAL METHODS, DOI DOI 10.3138/9781487596002
[5]  
Brascamp H.J., 1974, J FUNCT ANAL, V17, P227, DOI [10.1016/0022-1236(74)90013-5, DOI 10.1016/0022-1236(74)90013-5]
[6]  
Davies E. B., 1989, CAMBRIDGE TRACTS MAT, V92
[7]  
DENZLER J, 1996, UNPUB WINDOWS GIVEN
[8]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[9]  
FEDERER H, 1969, GRUNDLEHREN, V153
[10]   THE ESSENTIAL SPECTRUM OF NEUMANN LAPLACIANS ON SOME BOUNDED SINGULAR DOMAINS [J].
HEMPEL, R ;
SECO, LA ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) :448-483