An equilibrium lattice model of wetting on rough substrates

被引:8
作者
Borgs, C [1 ]
DeConinck, J
Kotecky, R
机构
[1] Microsoft Corp, Res, Redmond, WA 98052 USA
[2] Univ Mons, Fac Sci, B-7000 Mons, Belgium
[3] Charles Univ, Ctr Theoret Study, Prague, Czech Republic
[4] Charles Univ, Dept Theoret Phys, Prague, Czech Republic
关键词
wetting surface tension; rough surfaces; Wenzel's law; semi-infinite systems; Ising model; cluster expansions;
D O I
10.1023/A:1004512817234
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a semi-infinite 3-dimensional Ising system with a rough wall to describe the effect of the roughness r of the substrate on wetting. We show that the difference of wall free energies Delta tau(r) = tau(AW)(r) - tau(BW)(r) of the two phases behaves like Delta tau(r) similar to r Delta tau(1), where r = 1 characterizes a purely flat surface, confirming at low enough temperature and small roughness the validity of Wenzels law, cos theta(r) approximate to r cos theta(1), which relates the contact angle theta of a sessile droplet to the roughness of the substrate.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 14 条
[1]  
ADAMSON AW, PHYSICAL CHEM SURFAC
[2]  
[Anonymous], 1984, CRITICAL PHENOMENA R
[3]  
[Anonymous], REV MOD PHYS
[4]  
BORGS C, 1995, PHYS REV LETT, V74, P2293
[5]   ON THE LOCAL-STRUCTURE OF THE PHASE-SEPARATION LINE IN THE TWO-DIMENSIONAL ISING SYSTEM [J].
BRICMONT, J ;
LEBOWITZ, JL ;
PFISTER, CE .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :313-332
[6]   ON THE MICROSCOPIC VALIDITY OF THE WULFF CONSTRUCTION AND OF THE GENERALIZED YOUNG EQUATION [J].
DECONINCK, J ;
DUNLOP, F ;
RIVASSEAU, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :401-419
[7]  
Dobrushin RL., 1996, Topics Stat. Theo. Phys. Am. Math. Soc. Transl, V2, P59
[8]   SEMI-INFINITE ISING-MODEL .2. THE WETTING AND LAYERING TRANSITIONS [J].
FROHLICH, J ;
PFISTER, CE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (01) :51-74
[9]  
FROHLICH J, 1987, COMMUN MATH PHYS, V109, P193
[10]   EQUILIBRIUM SHAPES OF CRYSTALS ATTACHED TO WALLS [J].
KOTECKY, R ;
PFISTER, CE .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :419-445