Protected areas and climate change

被引:124
作者
Hannah, Lee [1 ]
机构
[1] Conservat Int, Ctr Appl Biodivers Sci, Arlington, VA 22202 USA
来源
YEAR IN ECOLOGY AND CONSERVATION BIOLOGY 2008 | 2008年 / 1134卷
关键词
protected areas; climate change; biodiversity; reserves; connectivity; assisted; migration;
D O I
10.1196/annals.1439.009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study of protected areas and climate change has now spanned two decades. Pioneering work in the late 1980s recognized the potential implications of shifting species range boundaries for static protected areas. Many early recommendations for protected area design were general, emphasizing larger protected areas, buffer zones, and connectivity between reserves. There were limited practical tests of these suggestions. Development of modeling and conservation planning methods in the 1990s allowed more rigorous testing of concepts of reserve and connectivity function in a changing climate. These studies have shown decreasing species representation in existing reserves due to climate change, and the ability of new protected areas to help slow loss of representation in mid-century scenarios. Connectivity on protected area periphery seems more effective than corridors linking protected areas. However, corridors serving other purposes, such as large carnivore movement, may be useful for accommodating species range shifts as well. Assisted migration and ex situ management strategies to complement protected areas are being explored. Finally, in scenarios of the latter half of the century, protected areas and connectivity become increasingly expensive and decreasingly effective, indicating the importance of reducing human-induced climate change.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 54 条
[1]   Modeling species' geographic distributions for preliminary conservation assessments:: an implementation with the spiny pocket mice (Heteromys) of Ecuador [J].
Anderson, RP ;
Martínez-Meyer, E .
BIOLOGICAL CONSERVATION, 2004, 116 (02) :167-179
[2]  
[Anonymous], CLIMATE CHANGE BIODI
[3]   Would climate change drive species out of reserves?: An assessment of existing reserve-selection methods [J].
Araújo, MB ;
Cabeza, M ;
Thuiller, W ;
Hannah, L ;
Williams, PH .
GLOBAL CHANGE BIOLOGY, 2004, 10 (09) :1618-1626
[4]   Coral bleaching, reef fish community phase shifts and the resilience of coral reefs [J].
Bellwood, David R. ;
Hoey, Andrew S. ;
Ackerman, John L. ;
Depczynski, Martial .
GLOBAL CHANGE BIOLOGY, 2006, 12 (09) :1587-1594
[5]   DOMAIN - A FLEXIBLE MODELING PROCEDURE FOR MAPPING POTENTIAL DISTRIBUTIONS OF PLANTS AND ANIMALS [J].
CARPENTER, G ;
GILLISON, AN ;
WINTER, J .
BIODIVERSITY AND CONSERVATION, 1993, 2 (06) :667-680
[6]  
Coulston JW, 2005, GLOBAL ECOL BIOGEOGR, V14, P31, DOI 10.1111/j.1466-822X.2004.00135.x
[7]   Novel methods improve prediction of species' distributions from occurrence data [J].
Elith, J ;
Graham, CH ;
Anderson, RP ;
Dudík, M ;
Ferrier, S ;
Guisan, A ;
Hijmans, RJ ;
Huettmann, F ;
Leathwick, JR ;
Lehmann, A ;
Li, J ;
Lohmann, LG ;
Loiselle, BA ;
Manion, G ;
Moritz, C ;
Nakamura, M ;
Nakazawa, Y ;
Overton, JM ;
Peterson, AT ;
Phillips, SJ ;
Richardson, K ;
Scachetti-Pereira, R ;
Schapire, RE ;
Soberón, J ;
Williams, S ;
Wisz, MS ;
Zimmermann, NE .
ECOGRAPHY, 2006, 29 (02) :129-151
[8]   Predictive habitat distribution models in ecology [J].
Guisan, A ;
Zimmermann, NE .
ECOLOGICAL MODELLING, 2000, 135 (2-3) :147-186
[9]  
Halpin PN, 1997, ECOL APPL, V7, P828
[10]   Conserving biodiversity under climate change: the rear edge matters [J].
Hampe, A ;
Petit, RJ .
ECOLOGY LETTERS, 2005, 8 (05) :461-467