Flexible parametric measurement error models

被引:68
作者
Carroll, RJ [1 ]
Roeder, K
Wasserman, L
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
关键词
Berkson model; change point; errors-in-variables; Markov chain Monte Carlo; normal mixture model;
D O I
10.1111/j.0006-341X.1999.00044.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inferences in measurement error models can be sensitive to modeling assumptions. Specifically, if the model is incorrect, the estimates can be inconsistent. To reduce sensitivity to modeling assumptions and yet still retain the efficiency of parametric inference, we propose using flexible parametric models that can accommodate departures from standard parametric models. We use mixtures of normals for this purpose. We study two cases in detail: a linear errors-in-variables model and a change-point Berkson model.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 23 条