Analysis of time-series gene expression data: Methods, challenges, and opportunities

被引:86
作者
Androulakis, I. P. [1 ]
Yang, E.
Almon, R. R.
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Pharmaceut Sci, Buffalo, NY 14260 USA
关键词
microarrays; bioinformatics; regulation; clustering; pharmacogenomics;
D O I
10.1146/annurev.bioeng.9.060906.151904
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collection necessary for obtaining the scope of data required for understanding the complexities of living organisms. Unraveling the coherent complex structures of transcriptional dynamics is the goal of a large family of computational methods aiming at upgrading the information content of time-course gene expression data. In this review, we summarize the qualitative characteristics of these approaches, discuss the main challenges that this type of complex data present, and, finally, explore the opportunities in the context of developing mechanistic models of cellular response.
引用
收藏
页码:205 / 228
页数:24
相关论文
共 121 条
  • [91] Nonlinear component analysis as a kernel eigenvalue problem
    Scholkopf, B
    Smola, A
    Muller, KR
    [J]. NEURAL COMPUTATION, 1998, 10 (05) : 1299 - 1319
  • [92] Serial regulation of transcriptional regulators in the yeast cell cycle
    Simon, I
    Barnett, J
    Hannett, N
    Harbison, CT
    Rinaldi, NJ
    Volkert, TL
    Wyrick, JJ
    Zeitlinger, J
    Gifford, DK
    Jaakkola, TS
    Young, RA
    [J]. CELL, 2001, 106 (06) : 697 - 708
  • [93] On a kernel-based method for pattern recognition, regression, approximation, and operator inversion
    Smola, AJ
    Scholkopf, B
    [J]. ALGORITHMICA, 1998, 22 (1-2) : 211 - 231
  • [94] STEINBACH M, 2003, ONEW VISTAS STAT PHY
  • [95] Significance analysis of time course microarray experiments
    Storey, JD
    Xiao, WZ
    Leek, JT
    Tompkins, RG
    Davis, RW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) : 12837 - 12842
  • [96] Straume M, 2004, METHOD ENZYMOL, V383, P149
  • [97] Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    Subramanian, A
    Tamayo, P
    Mootha, VK
    Mukherjee, S
    Ebert, BL
    Gillette, MA
    Paulovich, A
    Pomeroy, SL
    Golub, TR
    Lander, ES
    Mesirov, JP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) : 15545 - 15550
  • [98] Bayesian error analysis model for reconstructing transcriptional regulatory networks
    Sun, Ning
    Carroll, Raymond J.
    Zhao, Hongyu
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (21) : 7988 - 7993
  • [99] SYEDAMAHMOOD T, 2003, IEEE COMPUT SOC BIOI
  • [100] Evaluation of gene expression measurements from commercial microarray platforms
    Tan, PK
    Downey, TJ
    Spitznagel, EL
    Xu, P
    Fu, D
    Dimitrov, DS
    Lempicki, RA
    Raaka, BM
    Cam, MC
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (19) : 5676 - 5684