Finite lattice Bethe ansatz systems and the Heun equation

被引:18
作者
Dorey, P [1 ]
Suzuki, J
Tateo, R
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Shizuoka Univ, Fac Sci, Dept Phys, Ohya, Shizuoka, Japan
[3] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 06期
关键词
D O I
10.1088/0305-4470/37/6/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Poschl-Teller equation in complex domain and deduce infinite families of TQ and Bethe ansatz equations, classified by four integers. In all these models the form of T is very simple, while Q can be explicitly written in terms of the Heun function. At particular values there is an interesting interpretation in terms of finite lattice spin-L-2/2 XXZ quantum chain with Delta = cospi/L (for free-free boundary conditions), or Delta = -cospi/L (for periodic boundary conditions). This result generalizes the findings of Fridkin, Stroganov and Zagier. We also discuss the continuous (field theory) limit of these systems in view of the so-called ODE/IM correspondence.
引用
收藏
页码:2047 / 2061
页数:15
相关论文
共 36 条
[1]  
BAXTER RJ, 1982, EXACTLEY SOLVED MODE
[2]   Integrable structure of conformal field theory III. The Yang-Baxter relation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (02) :297-324
[3]   Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) :381-398
[4]   Integrable structure of conformal field theory - II. Q-operator and DDV equation [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) :247-278
[5]   Integrable structure of W3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory [J].
Bazhanov, VV ;
Hibberd, AN ;
Khoroshkin, SM .
NUCLEAR PHYSICS B, 2002, 622 (03) :475-547
[6]   Spectral determinants for Schrodinger equation and Q-operators of conformal field theory [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) :567-576
[7]  
BAZHANOV VV, 2003, HEPTH0307108
[8]   Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations [J].
Dorey, P ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (38) :L419-L425
[9]   On the relation between Stokes multipliers and the T-Q systems of conformal field theory [J].
Dorey, P ;
Tateo, R .
NUCLEAR PHYSICS B, 1999, 563 (03) :573-602
[10]   Differential equations and integrable models: the SU(3) case (vol 571, pg 583, 2000) [J].
Dorey, P ;
Tateo, R .
NUCLEAR PHYSICS B, 2001, 603 (03) :582-582