Anomalous scaling in passive scalar advection: Monte Carlo Lagrangian trajectories

被引:46
作者
Gat, O [1 ]
Procaccia, I
Zeitak, R
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[3] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
关键词
D O I
10.1103/PhysRevLett.80.5536
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical method which is used to calculate anomalous scaling exponents of structure functions in the Kraichnan passive scalar advection model [R.H. Kraichnan, Phys. Fluids Il, 945 (1968)]. This Monte Carlo method, which is applicable in any space dimension, is based on the Lagrangian path interpretation of passive scalar dynamics, and uses the recently discovered equivalence between scaling exponents of structure functions and relaxation rates in the stochastic shape dynamics of groups of Lagrangian particles. We calculate third and fourth order anomalous exponents for several dimensions, comparing with the predictions of perturbative calculations in large dimensions. We find that Kraichnan's closure appears to give results in close agreement with the numerics. The third order exponents are compatible with our own previous nonperturbative calculations.
引用
收藏
页码:5536 / 5539
页数:4
相关论文
共 14 条
[1]   Three-point correlation function of a scalar mixed by an almost smooth random velocity field [J].
Balkovsky, E ;
Falkovich, G ;
Lebedev, V .
PHYSICAL REVIEW E, 1997, 55 (05) :R4881-R4884
[2]   NORMAL AND ANOMALOUS SCALING OF THE 4TH-ORDER CORRELATION-FUNCTION OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
CHERTKOV, M ;
FALKOVICH, G ;
KOLOKOLOV, I ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1995, 52 (05) :4924-4941
[3]   Direct numerical simulations of the Kraichnan model: Scaling exponents and fusion rules [J].
Fairhall, AL ;
Galanti, B ;
Lvov, VS ;
Procaccia, I .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4166-4169
[4]  
FRISCH U, CONDMAT9802192
[5]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[6]   Perturbative and nonperturbative analysis of the third-order zero modes in the Kraichnan model for turbulent advection [J].
Gat, O ;
Lvov, VS ;
Procaccia, I .
PHYSICAL REVIEW E, 1997, 56 (01) :406-416
[7]   Multiscaling in passive scalar advection as stochastic shape dynamics [J].
Gat, O ;
Zeitak, R .
PHYSICAL REVIEW E, 1998, 57 (05) :5511-5519
[8]   Nonperturbative zero modes in the Kraichnan model for turbulent advection [J].
Gat, O ;
Lvov, VS ;
Podivilov, E ;
Procaccia, I .
PHYSICAL REVIEW E, 1997, 55 (04) :R3836-R3839
[9]  
GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834
[10]  
Kloeden P.E., 1992, Stochastic differential equations, V23