Limits and advantages of x-ray absorption near edge structure for nanometer scale metallic clusters

被引:106
作者
Bazin, D
Rehr, JJ
机构
[1] Univ Paris 11, LURE, F-91405 Orsay, France
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
关键词
D O I
10.1021/jp0223051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the analysis of the K edge of 3d or 4d transition metals when manometer-scale metallic clusters are considered. From a practical point of view, numerical simulation of the XANES part of the K absorption spectrum of most elements of the periodic table can be performed through full multiple scattering calculations. Then, on the basis of a linear combination of the XANES spectra of reference compounds, the presence of the different phases present inside the materials can be quantified. Here, we show that for nanometer scale metallic clusters, it is not sufficient to consider only the electronic state of the metal of interest to perform a linear combination analysis. In the case of these peculiar materials, special attention has to be paid to different structural parameters, for example, the size and morphology of the cluster, the interatomic distance (taking into account contraction/dilatation processes), and the presence of heterometallic bonds (in the case of bimetallic clusters). Moreover, this approach is not specific to the metallic state. As a conclusion, the quantitative measurement of the structural parameters coming from EXAFS analysis constitutes an invaluable starting point for the FEFF-PCA simulation. The fact that major results coming from the emergence of dynamical studies, namely, Quick-EXAFS or energy dispersive EXAFS, are now obtained will lead to significant breakthroughs in the understanding of the genesis/reactivity of manometer-scale entities.
引用
收藏
页码:12398 / 12402
页数:5
相关论文
共 88 条
  • [81] On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/gamma-Al2O3
    Vaarkamp, M
    Miller, JT
    Modica, FS
    Koningsberger, DC
    [J]. JOURNAL OF CATALYSIS, 1996, 163 (02) : 294 - 305
  • [82] EXTENDED X-RAY ABSORPTION FINE-STRUCTURE (EXAFS) OF DISPERSED METAL-CATALYSTS
    VIA, GH
    SINFELT, JH
    LYTLE, FW
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (02) : 690 - 699
  • [83] K-EDGE ABSORPTION-SPECTRA OF SELECTED VANADIUM COMPOUNDS
    WONG, J
    LYTLE, FW
    MESSMER, RP
    MAYLOTTE, DH
    [J]. PHYSICAL REVIEW B, 1984, 30 (10): : 5596 - 5610
  • [84] Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra
    Wu, ZY
    Ouvrard, G
    Gressier, P
    Natoli, CR
    [J]. PHYSICAL REVIEW B, 1997, 55 (16) : 10382 - 10391
  • [85] In situ time-resolved energy-dispersive X-ray absorption fine structure study on the decarbonylation processes of Mo(CO)6 entrapped in NaY and HY zeolites
    Yamaguchi, A
    Suzuki, A
    Shido, T
    Inada, Y
    Asakura, K
    Nomura, M
    Iwasawa, Y
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (09) : 2415 - 2422
  • [86] Time-resolved energy-dispersive XAFS study on the reduction process of Cu-ZSM-5 catalysts
    Yamaguchi, A
    Inada, Y
    Shido, T
    Asakura, K
    Nomura, M
    Iwasawa, Y
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 : 654 - 656
  • [87] Ensemble effects in nanostructured TiO2 used in the gas-phase photooxidation of trichloroethylene
    Yeung, KL
    Maira, AJ
    Stolz, J
    Hung, E
    Ho, NKC
    Wei, AC
    Soria, J
    Chao, KJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (18) : 4608 - 4616
  • [88] 2001, APPL CATAL A, V213, P147