Geometry optimization for crystals in Thomas-Fermi type theories of solids

被引:9
作者
Blanc, X [1 ]
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Champs Sur Marne, Marne La Vallee, France
关键词
Thomas-Fermi theory; variational methods; nonlinear PDEs; periodic; solid; elliptic PDEs; stability;
D O I
10.1081/PDE-100001767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here the problem of geometry optimization for a crystal in the Thomas-Fermi-Von Weizsacker (TFW) solid-state setting, i.e., the problem of minimizing the TFW energy with respect to the periodic lattice defining the positions of the nuclei. We show the existence of such a minimum, and use for that purpose the TFW models of polymers and thin films defined in a previous work.
引用
收藏
页码:651 / 696
页数:46
相关论文
共 18 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[3]   THE MOST NEGATIVE-ION IN THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
LIEB, EH .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1985, 18 (06) :1045-1059
[4]   SHARP CONDITION ON THE DECAY OF THE POTENTIAL FOR THE ABSENCE OF A ZERO-ENERGY GROUND-STATE OF THE SCHRODINGER-EQUATION [J].
BENGURIA, RD ;
YARUR, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :1513-1518
[5]   Geometry optimization for Thomas-Fermi type theories for solids [J].
Blanc, X ;
Le Bris, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (06) :551-556
[6]  
Blanc X., 2000, Adv. Differ. Equ., V5, P977
[7]  
Catto I, 1996, CR ACAD SCI I-MATH, V322, P357
[8]  
CATTO I, 1993, COMM PARTIAL DIFFERE, V18
[9]  
CATTO I, 1992, COMM PARTIAL DIFFERE, V17
[10]  
Catto I., 1998, MATH THEORY THERMODY