Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes

被引:121
作者
Träff, KL
Cordero, RRO
van Zyl, WH
Hahn-Hägerdal, B
机构
[1] Lund Univ, Dept Appl Microbiol, S-22100 Lund, Sweden
[2] Univ Stellenbosch, Dept Microbiol, ZA-7602 Matieland, South Africa
关键词
D O I
10.1128/AEM.67.12.5668-5674.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharomyces cerevisiae ferments hexoses efficiently but is unable to ferment xylose. When the bacterial enzyme xylose isomerase (XI) from Thermus thermophilus was produced in S. cerevisiae, xylose utilization and ethanol formation were demonstrated. In addition, xylitol and acetate were formed. An unspecific aldose reductase (AR) capable of reducing xylose to xylitol has been identified in S. cerevisiae. The GRE3 gene, encoding the AR enzyme, was deleted in S. cerevisiae CEN.PK2-1C, yielding YUSM1009a. XT from T. thermophilus was produced, and endogenous xylulokinase from S. cerevisiae was overproduced in S. cerevisiae CEN.PK2-1C and YUSM1009a. In recombinant strains from which the GRE3 gene was deleted, xylitol formation decreased twofold. Deletion of the GRE3 gene combined with expression of the xyL4 gene from T. thermophilus on a replicative plasmid generated recombinant xylose utilizing S. cerevisiae strain TMB3102, which produced ethanol from xylose with a yield of 0.28 mmol of C from ethanol/mmol of C from xylose. None of the recombinant strains grew on xylose.
引用
收藏
页码:5668 / 5674
页数:7
相关论文
共 42 条
[1]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[2]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[3]   CONSTRUCTION AND CHARACTERIZATION OF NEW CLONING VEHICLES .2. MULTIPURPOSE CLONING SYSTEM [J].
BOLIVAR, F ;
RODRIGUEZ, RL ;
GREENE, PJ ;
BETLACH, MC ;
HEYNEKER, HL ;
BOYER, HW ;
CROSA, JH ;
FALKOW, S .
GENE, 1977, 2 (02) :95-113
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   CATALYTIC PROPERTIES OF D-XYLOSE ISOMERASE FROM STREPTOMYCES-VIOLACEORUBER [J].
CALLENS, M ;
KERSTERSHILDERSON, H ;
VANOPSTAL, O ;
DEBRUYNE, CK .
ENZYME AND MICROBIAL TECHNOLOGY, 1986, 8 (11) :696-700
[6]   D-XYLOSE FERMENTATION TO ETHANOL BY SCHIZOSACCHAROMYCES-POMBE CLONED WITH XYLOSE ISOMERASE GENE [J].
CHAN, EC ;
UENG, PP ;
CHEN, L .
BIOTECHNOLOGY LETTERS, 1986, 8 (04) :231-234
[7]   REGULATION OF CARBON METABOLISM IN CHEMOSTAT CULTURES OF SACCHAROMYCES-CEREVISIAE GROWN ON MIXTURES OF GLUCOSE AND ETHANOL [J].
DEJONGGUBBELS, P ;
VANROLLEGHEM, P ;
HEIJNEN, S ;
VANDIJKEN, JP ;
PRONK, JT .
YEAST, 1995, 11 (05) :407-418
[8]   TEMPERATURE PROFILES OF GROWTH AND ETHANOL TOLERANCE OF THE XYLOSE-FERMENTING YEASTS CANDIDA-SHEHATAE AND PICHIA-STIPITIS [J].
DUPREEZ, JC ;
BOSCH, M ;
PRIOR, BA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1987, 25 (06) :521-525
[9]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[10]  
ENTIAN KD, 1998, YEAST GENE ANAL, V26