Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features

被引:90
作者
Georgiadis, Pantelis [1 ]
Cavouras, Dionisis [2 ]
Kalatzis, Ioannis [2 ]
Daskalakis, Antonis [2 ]
Kagadis, George C. [2 ]
Sifaki, Koralia [3 ]
Malamas, Menelaos
Nikiforidis, George [1 ]
Solomou, Ekaterini [4 ]
机构
[1] Univ Patras, Sch Med, Lab Med Phys, Med Image Proc & Anal Grp, GR-26503 Patras, Greece
[2] Inst Educ Technol, Dept Med Instrumentat Technol, Med Image & Signal Proc Lab, GR-12210 Athens, Greece
[3] Gen Hellen AF Hosp 251, MRI Unit, Athens, Greece
[4] Univ Patras, Sch Med, Dept Radiol, GR-26503 Rion, Greece
关键词
brain tumors; MRI; textural features; pattern classification;
D O I
10.1016/j.cmpb.2007.10.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of the present study was to design, implement and evaluate a software system for discriminating between metastatic and primary brain tumors (gliomas and meningiomas) on MRI, employing textural features from routinely taken T1 post-contrast images. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a non-linear least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 67 T1-weighted post-contrast MR images (21 metastases, 19 meningiomas and 27 gliomas). LSFT enhanced the performance of the PNN, achieving classification accuracies of 95.24% for discriminating between metastatic and primary tumors and 93.48% for distinguishing gliomas from meningiomas. To improve the generalization of the proposed classification system, the external cross-validation method was also used, resulting in 71.43% and 81.25% accuracies in distinguishing metastatic from primary tumors and gliomas from meningiomas, respectively. LSFT improved PNN performance, increased class separability and resulted in dimensionality reduction. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 27 条
[1]  
Ahmed N, 1975, ORTHOGONAL TRANSFORM
[2]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[3]  
[Anonymous], 1998, PATTERN RECOGNITION
[4]  
Ashby LS, 2006, UPDATE CANC THERAPEU, V1, P475
[5]   1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors [J].
Cho, YD ;
Choi, GH ;
Lee, SP ;
Kim, JK .
MAGNETIC RESONANCE IMAGING, 2003, 21 (06) :663-672
[6]  
CRUICKSHANK G, 2004, SURGERY OXFORD, V22, P69
[7]   The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification [J].
Devos, A ;
Simonetti, AW ;
van der Graaf, M ;
Lukas, L ;
Suykens, JAK ;
Vanhamme, L ;
Buydens, LMC ;
Heerschap, A ;
Van Huffel, S .
JOURNAL OF MAGNETIC RESONANCE, 2005, 173 (02) :218-228
[8]   Classification of brain tumours using short echo time 1H MR spectra [J].
Devos, A ;
Lukas, L ;
Suykens, JAK ;
Vanhamme, L ;
Tate, AR ;
Howe, FA ;
Majós, C ;
Moreno-Torres, A ;
van der Graaf, M ;
Arús, C ;
Van Huffel, S .
JOURNAL OF MAGNETIC RESONANCE, 2004, 170 (01) :164-175
[9]  
Doolittle Nancy D, 2004, Semin Oncol Nurs, V20, P224, DOI 10.1016/S0749-2081(04)00086-5
[10]  
Galloway MM., 1975, COMPUTER GRAPHICS IM, V4, P172, DOI DOI 10.1016/S0146-664X(75)80008-6