Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53 -: Implications for cancer therapy

被引:55
作者
Müller, P [1 ]
Ceskova, P [1 ]
Vojtesek, B [1 ]
机构
[1] Masaryk Mem Canc Inst, Dept Expt Oncol, Brno 65653, Czech Republic
关键词
D O I
10.1074/jbc.M412767200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32degreesC causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.
引用
收藏
页码:6682 / 6691
页数:10
相关论文
共 61 条
[1]  
[Anonymous], 1989, Molecular Cloning: A Laboratory Manual
[2]   MDM2 EXPRESSION IS INDUCED BY WILD TYPE-P53 ACTIVITY [J].
BARAK, Y ;
JUVEN, T ;
HAFFNER, R ;
OREN, M .
EMBO JOURNAL, 1993, 12 (02) :461-468
[3]   A PROTEOLYTIC FRAGMENT FROM THE CENTRAL REGION OF P53 HAS MARKED SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY WHEN GENERATED FROM WILD-TYPE BUT NOT FROM ONCOGENIC MUTANT P53-PROTEIN [J].
BARGONETTI, J ;
MANFREDI, JJ ;
CHEN, XB ;
MARSHAK, DR ;
PRIVES, C .
GENES & DEVELOPMENT, 1993, 7 (12B) :2565-2574
[4]  
BARTEK J, 1991, ONCOGENE, V6, P1699
[5]   Hsp90: an emerging target for breast cancer therapy [J].
Beliakoff, J ;
Whitesell, L .
ANTI-CANCER DRUGS, 2004, 15 (07) :651-662
[6]   p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect [J].
Blagosklonny, MV .
FASEB JOURNAL, 2000, 14 (13) :1901-1907
[7]   Rescuing the function of mutant p53 [J].
Bullock, AN ;
Fersht, A .
NATURE REVIEWS CANCER, 2001, 1 (01) :68-76
[8]   MAPPING OF THE P53 AND MDM-2 INTERACTION DOMAINS [J].
CHEN, JD ;
MARECHAL, V ;
LEVINE, AJ .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (07) :4107-4114
[9]   REFINED SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF THE TUMOR-SUPPRESSOR P53 [J].
CLORE, GM ;
ERNST, J ;
CLUBB, R ;
OMICHINSKI, JG ;
KENNEDY, WMP ;
SAKAGUCHI, K ;
APPELLA, E ;
GRONENBORN, AM .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (04) :321-333
[10]   Tissue-specific p53 responses to ionizing radiation and their genetic modification: the key to tissue-specific tumour susceptibility? [J].
Coates, PJ ;
Lorimore, SA ;
Lindsay, KJ ;
Wright, EG .
JOURNAL OF PATHOLOGY, 2003, 201 (03) :377-388