Dynamic inferential estimation using principal components regression (PCR)

被引:35
作者
Hartnett, MK [1 ]
Lightbody, G [1 ]
Irwin, GW [1 ]
机构
[1] Queens Univ Belfast, Dept Elect & Elect Engn, Control Engn Res Grp, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
inferential estimation; subset selection; genetic algorithms; state-space modelling; Principal Variables method;
D O I
10.1016/S0169-7439(98)00021-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal components regression (PCR) is applied to the dynamic inferential estimation of plant outputs from highly correlated data. A genetic algorithm (GA) approach is developed for the optimal selection of subsets from the available measurement variables, thereby providing a method of identifying nonessential elements. The theoretical link between principal components analysis (PCA) and state-space modelling is employed to identify a measurement equation involving the GA-selected subset, which is then used for inferential estimation of the omitted variables. These techniques are successfully demonstrated for the inferential estimation of outputs from a validated industrial benchmark simulation of an overheads condenser and reflux drum model (OCRD). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 19 条
  • [1] MULTIVARIATE SELECTION OF VARIABLES IN INDUSTRIAL QUALITY-CONTROL - OPTIMIZING AVIATION FUEL FINAL CONTROL
    ANDRADE, JM
    PRADA, D
    MUNIATEGUI, S
    GOMEZ, B
    PAN, M
    [J]. JOURNAL OF CHEMOMETRICS, 1993, 7 (05) : 427 - 438
  • [2] [Anonymous], 1990, SUBSET SELECTION REG, DOI DOI 10.1007/978-1-4899-2939-6
  • [3] MODEL VALIDATION TESTS FOR MULTIVARIABLE NONLINEAR MODELS INCLUDING NEURAL NETWORKS
    BILLINGS, SA
    ZHU, QM
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (04) : 749 - 766
  • [4] *CONTR COMP AID DE, 1990, OV COMD REFL DRUM MO
  • [5] Deane J.M., 1989, J CHEMOMETR, V3, P477
  • [6] A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM
    DOWNS, JJ
    VOGEL, EF
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) : 245 - 255
  • [7] Goldberg D., 1989, GENETIC ALGORITHMS S
  • [8] JOHANSSON R, 1993, SYSTEM MODELLING IDE
  • [9] JOLIFFE IT, 1972, APPL STAT, V21, P160
  • [10] Jolliffe I. T., 1986, PRINCIPAL COMPONENT, DOI DOI 10.1007/978-1-4757-1904-87