Systematic solution of the Vlasov-Poisson equations for charged particle beams

被引:28
作者
Channell, PJ [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
BEAM-PLASMA SYSTEMS; BOLTZMANN-VLASOV EQUATION; CHARGED-PARTICLE TRANSPORT; FOCUSING; HAMILTONIANS; POISSON EQUATION;
D O I
10.1063/1.873339
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Rapidly oscillating solutions of the Vlasov-Poisson equations are required when external forces are rapidly oscillating, as occurs in focusing systems for charged particle beams. Such systems are treated using a Hamiltonian averaging technique carried out to third order. As a result one can deal with the problems of matching, stability, and transient time evolution using the well-established techniques previously used for simpler, time-independent systems. (C) 1999 American Institute of Physics. [S1070-664X(99)03203-6].
引用
收藏
页码:982 / 993
页数:12
相关论文
共 12 条
[1]  
CHANNELL PJ, 1996, FIELDS I COMMUN, V10, P45
[2]  
Davidson RC, 1998, PART ACCEL, V59, P175
[3]   Nonlinear stability theorem for high-intensity charged particle beams [J].
Davidson, RC .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :991-994
[4]   Three-dimensional kinetic stability theorem for high-intensity charged particle beams [J].
Davidson, RC .
PHYSICS OF PLASMAS, 1998, 5 (09) :3459-3468
[5]   Removing the time dependence in a rapidly oscillating Hamiltonian [J].
Gabitov, I ;
Marshall, I .
NONLINEARITY, 1998, 11 (04) :845-857
[6]  
KAPCHINSKIJ IM, 1959, P INT C HIGH EN ACC, P247
[7]  
Marsden J., 1994, INTRO MECH SYMMETRY
[8]   THE MAXWELL-VLASOV EQUATIONS AS A CONTINUOUS HAMILTONIAN SYSTEM [J].
MORRISON, PJ .
PHYSICS LETTERS A, 1980, 80 (5-6) :383-386
[9]  
Nayfeh A. H., 1973, Perturbation methods
[10]  
Struckmeier J., 1992, Particle Accelerators, V39, P219