The impact of target site accessibility on the design of effective siRNAs

被引:195
作者
Tafer, Hakim [1 ]
Ameres, Stefan L. [2 ]
Obernosterer, Gregor [3 ]
Gebeshuber, Christoph A. [3 ]
Schroeder, Renee [2 ]
Martinez, Javier [3 ]
Hofacker, Ivo L. [1 ]
机构
[1] Univ Vienna, Inst Theoret Biochem, A-1090 Vienna, Austria
[2] Univ Vienna, Max F Perutz Labs, A-1030 Vienna, Austria
[3] Austrian Acad Sci, Inst Mol Biotechnol IMBA, A-1030 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1038/nbt1404
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.
引用
收藏
页码:578 / 583
页数:6
相关论文
共 22 条
[1]   Molecular basis for target RNA recognition and cleavage by human RISC [J].
Ameres, Stefan Ludwig ;
Martinez, Javier ;
Schroeder, Renee .
CELL, 2007, 130 (01) :101-112
[2]   Local RNA base pairing probabilities in large sequences [J].
Bernhart, SH ;
Hofacker, IL ;
Stadler, PF .
BIOINFORMATICS, 2006, 22 (05) :614-615
[3]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[4]   A statistical sampling algorithm for RNA secondary structure prediction [J].
Ding, Y ;
Lawrence, CE .
NUCLEIC ACIDS RESEARCH, 2003, 31 (24) :7280-7301
[5]   Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond [J].
Ding, Y ;
Lawrence, CE .
NUCLEIC ACIDS RESEARCH, 2001, 29 (05) :1034-1046
[6]   Specificity of microRNA target selection in translational repression [J].
Doench, JG ;
Sharp, PA .
GENES & DEVELOPMENT, 2004, 18 (05) :504-511
[7]   Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction [J].
Doshi, KJ ;
Cannone, JJ ;
Cobaugh, CW ;
Gutell, RR .
BMC BIOINFORMATICS, 2004, 5 (1)
[8]   Kinetic analysis of the RNAi enzyme complex [J].
Haley, B ;
Zamore, PD .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (07) :599-606
[9]   Design of a genome-wide siRNA library using an artificial neural network [J].
Huesken, D ;
Lange, J ;
Mickanin, C ;
Weiler, J ;
Asselbergs, F ;
Warner, J ;
Meloon, B ;
Engel, S ;
Rosenberg, A ;
Cohen, D ;
Labow, M ;
Reinhardt, M ;
Natt, F ;
Hall, J .
NATURE BIOTECHNOLOGY, 2005, 23 (08) :995-1001
[10]   Expression profiling reveals off-target gene regulation by RNAi [J].
Jackson, AL ;
Bartz, SR ;
Schelter, J ;
Kobayashi, SV ;
Burchard, J ;
Mao, M ;
Li, B ;
Cavet, G ;
Linsley, PS .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :635-637