Turbulent decay of a passive scalar in the Batchelor limit: Exact results from a quantum-mechanical approach

被引:44
作者
Son, DT [1 ]
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 04期
关键词
D O I
10.1103/PhysRevE.59.R3811
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the decay of a passive scalar theta advected by a random incompressible flow with zero correlation time in the Batchelor Limit can be mapped exactly to a certain quantum-mechanical system with a finite number of degrees of freedom. The Schrodinger equation is derived and its solution is analyzed for the case where, at the beginning, the scalar has Gaussian statistics with correlation function of the form e(-\x-y\2). Any equal-time correlation function of the scalar can be expressed via the solution to the Schrodinger equation in a closed algebraic form. We find that the scalar is intermittent during its decay and the average of \theta\(alpha) (assuming zero mean value of theta) falls as e(-gamma alpha Dt) at large t, where D is a parameter of the flow, gamma(alpha)=1/4 alpha(6 -alpha) for 0<alpha<3, and gamma(alpha)=9/4 for alpha greater than or equal to 3, independent of alpha.
引用
收藏
页码:R3811 / R3814
页数:4
相关论文
共 24 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]   Slow modes in passive advection [J].
Bernard, D ;
Gawedzki, K ;
Kupiainen, A .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :519-569
[3]   NORMAL AND ANOMALOUS SCALING OF THE 4TH-ORDER CORRELATION-FUNCTION OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
CHERTKOV, M ;
FALKOVICH, G ;
KOLOKOLOV, I ;
LEBEDEV, V .
PHYSICAL REVIEW E, 1995, 52 (05) :4924-4941
[4]  
FADDEEV LD, 1980, GAUGE FIELDS INTRO Q, pCH2
[5]   Instantons and intermittency [J].
Falkovich, G ;
Kolokolov, I ;
Lebedev, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4896-4907
[6]  
Frish U., 1995, LEGACY AN KOLMOGOROV
[7]   The Lyapunov spectrum of a continuous product of random matrices [J].
Gamba, A ;
Kolokolov, IV .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (3-4) :489-499
[8]  
GAMBA A, CHAOSDYN9808001
[9]  
GAWEDZKI K, 1995, PHYS REV LETT, V75, P3834, DOI 10.1103/PhysRevLett.75.3834
[10]  
Itzykson C., 1980, QUANTUM FIELD THEORY