Instantons and intermittency

被引:136
作者
Falkovich, G
Kolokolov, I
Lebedev, V
Migdal, A
机构
[1] BUDKER INST NUCL PHYS,NOVOSIBIRSK 630090,RUSSIA
[2] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
[3] PRINCETON UNIV,DEPT PHYS,PRINCETON,NJ 08544
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4896
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe the method for finding the non-Gaussian tails of the probability distribution function (PDF) for solutions of a stochastic differential equation, such as the convection equation for a passive scalar, the random driven Navier-Stokes equation, etc. The existence of such ails is generally regarded as a manifestation of the intermittency phenomenon. Our formalism is based on the WKB approximation in the functional integral for the conditional probability of large fluctuation. We argue that the main contribution to the functional integral is given by a coupled field-force configuration-the instanton. As an example, we examine the correlation functions of the passive scalar u advected by a large-scale velocity field delta correlated in time. We find the instanton determining the tails of the generating functional, and show that it is different from the instanton that determines the probability distribution function of high powers of u. We discuss the simplest instantons for the Navier-Stokes equation.
引用
收藏
页码:4896 / 4907
页数:12
相关论文
共 23 条
[1]  
BALKOVSKY E, 1995, JETP LETT+, V61, P1049
[2]  
BELINICHER VI, 1987, ZH EKSP TEOR FIZ, V66, P303
[3]   FINITE-TIME VORTEX SINGULARITY AND KOLMOGOROV SPECTRUM IN A SYMMETRICAL 3-DIMENSIONAL SPIRAL MODEL [J].
BHATTACHARJEE, A ;
NG, CS ;
WANG, XG .
PHYSICAL REVIEW E, 1995, 52 (05) :5110-5123
[4]   EXACT FIELD-THEORETICAL DESCRIPTION OF PASSIVE SCALAR CONVECTION IN AN N-DIMENSIONAL LONG-RANGE VELOCITY-FIELD [J].
CHERTKOV, M ;
GAMBA, A ;
KOLOKOLOV, I .
PHYSICS LETTERS A, 1994, 192 (5-6) :435-443
[5]  
CHERTKOV M, 1995, PHYS REV E, V51, P5068
[6]   FIELD-THEORY RENORMALIZATION AND CRITICAL DYNAMICS ABOVE T - HELIUM, ANTI-FERROMAGNETS, AND LIQUID-GAS SYSTEMS [J].
DEDOMINICIS, C ;
PELITI, L .
PHYSICAL REVIEW B, 1978, 18 (01) :353-376
[7]  
Dominicis CD., 1976, J PHYS-PARIS, V37, P247
[8]  
DOROKHOV ON, 1983, ZH EKSP TEOR FIZ, V58, P606
[9]   PROBABILITY-DISTRIBUTION FUNCTIONS FOR NAVIER-STOKES TURBULENCE [J].
GILES, MJ .
PHYSICS OF FLUIDS, 1995, 7 (11) :2785-2795
[10]   Instantons in the Burgers equation [J].
Gurarie, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4908-4914