Instantons in the Burgers equation

被引:165
作者
Gurarie, V
Migdal, A
机构
[1] Department of Physics, Princeton University, Princeton, NJ
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The instanton solution for the forced Burgers equation is found. This solution describes the exponential tail of the probability distribution function of velocity differences in the region where shock waves are absent; that is, or large positive velocity differences. The results agree with the one found recently by Polyakov, who used thr operator product conjecture. If this conjecture is true, then our WKB asymptotics of the Wyld functional integral should be exact to all orders of perturbation expansion around the instanton solution. We also generalized our solution for the arbitrary dimension of the Burgers (KPZ) equation. As a result we found the asymptotics of the angular dependence of the velocity difference probability distribution function.
引用
收藏
页码:4908 / 4914
页数:7
相关论文
共 10 条
[1]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION - ANOMALOUS SCALING AND PROBABILITY DENSITY-FUNCTIONS [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 52 (05) :5681-5684
[2]  
CHEKHLOV A, 1995, PHYS REV E, V51, pR279
[3]   ENERGY-SPECTRA OF CERTAIN RANDOMLY-STIRRED FLUIDS [J].
DEDOMINICIS, C ;
MARTIN, PC .
PHYSICAL REVIEW A, 1979, 19 (01) :419-422
[4]   Instantons and intermittency [J].
Falkovich, G ;
Kolokolov, I ;
Lebedev, V ;
Migdal, A .
PHYSICAL REVIEW E, 1996, 54 (05) :4896-4907
[5]   PROBABILITY-DISTRIBUTION FUNCTIONS FOR NAVIER-STOKES TURBULENCE [J].
GILES, MJ .
PHYSICS OF FLUIDS, 1995, 7 (11) :2785-2795
[6]   LOOP EQUATION AND AREA LAW IN TURBULENCE [J].
MIGDAL, AA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (08) :1197-1238
[7]   QUARK CONFINEMENT AND TOPOLOGY OF GAUGE THEORIES [J].
POLYAKOV, AM .
NUCLEAR PHYSICS B, 1977, 120 (03) :429-458
[8]   Turbulence without pressure [J].
Polyakov, AM .
PHYSICAL REVIEW E, 1995, 52 (06) :6183-6188
[9]   FORMULATION OF THE THEORY OF TURBULENCE IN AN INCOMPRESSIBLE FLUID [J].
WYLD, HW .
ANNALS OF PHYSICS, 1961, 14 (01) :143-165
[10]  
Zinn-Justin J, 1989, FIELD THEORY CRITICA