Metabolism of arachidonic acid by cyclooxygenase is one of the primary sources of reactive oxygen species in the ischemia brain. Neuronal overexpression of cyclooxygenase-2 has recently been shown to contribute to neurodegeneration following ischemic injury. In the present study, we examined the possibility that the neuroprotective effects of the cyclooxygenase-2 inhibitor nimesulide would depend upon reduction of oxidative stress following cerebral ischemia. Gerbils were subjected to 5 min of transient global cerebral ischemia followed by 48 h of reperfusion and markers of oxidative stress were measured in hippocampus of gerbils receiving vehicle or nimesulide treatment at three different clinically relevant doses (3, 6 or 12 mg/kg). Compared with vehicle, nimesulide significantly (P < 0.05) reduced hippocampal glutathione depletion and lipid peroxidation, as assessed by the levels of malondialdehyde (MDA), 4-hydroxy-alkenals (4-HDA) and lipid hydroperoxides levels, even when the treatment was delayed until 6 h after ischemia. Biochemical evidences of nimesulide neuroprotection were supported by histofluorescence findings using the novel marker of neuronal degeneration Fluoro-Jade B. Few Fluoro-Jade B positive cells were seen in CAl region of hippocampus in ischemia animals treated with nimesulide compared with vehicle. These results suggest that nimesulide may protect neurons by attenuating oxidative stress and reperfusion injury following the ischemia insult with a wide therapeutic window of protection. (C) 2003 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.