Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data

被引:40
作者
Alkodsi, Amjad [1 ,3 ]
Louhimo, Riku [1 ,3 ]
Hautaniemi, Sampsa [1 ,2 ]
机构
[1] Univ Helsinki, Syst Biol Lab, Res Programs Unit, Genome Scale Biol, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Fac Med, Syst Biol, FIN-00014 Helsinki, Finland
[3] Univ Helsinki, Inst Biomed, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Somatic copy number alterations; algorithm comparison; whole-genome sequencing; whole-exome sequencing; cancer; COMPARATIVE GENOMIC HYBRIDIZATION; HIGH-RESOLUTION ANALYSIS; READ ALIGNMENT; CANCER GENOME; HETEROZYGOSITY; ABERRATIONS; INTEGRATION; EXPRESSION; FRAMEWORK;
D O I
10.1093/bib/bbu004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Somatic copy-number alterations (SCNAs) are an important type of structural variation affecting tumor pathogenesis. Accurate detection of genomic regions with SCNAs is crucial for cancer genomics as these regions contain likely drivers of cancer development. Deep sequencing technology provides single-nucleotide resolution genomic data and is considered one of the best measurement technologies to detect SCNAs. Although several algorithms have been developed to detect SCNAs from whole-genome and whole-exome sequencing data, their relative performance has not been studied. Here, we have compared ten SCNA detection algorithms in both simulated and primary tumor deep sequencing data. In addition, we have evaluated the applicability of exome sequencing data for SCNA detection. Our results show that (i) clear differences exist in sensitivity and specificity between the algorithms, (ii) SCNA detection algorithms are able to identify most of the complex chromosomal alterations and (iii) exome sequencing data are suitable for SCNA detection.
引用
收藏
页码:242 / 254
页数:13
相关论文
共 39 条
  • [1] CoNVEX: copy number variation estimation in exome sequencing data using HMM
    Amarasinghe, Kaushalya C.
    Li, Jason
    Halgamuge, Saman K.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [2] RSVSim: an R/Bioconductor package for the simulation of structural variations
    Bartenhagen, Christoph
    Dugas, Martin
    [J]. BIOINFORMATICS, 2013, 29 (13) : 1679 - 1681
  • [3] Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data
    Baudis, Michael
    [J]. BMC CANCER, 2007, 7 (1)
  • [4] High-resolution analysis of DNA copy number using oligonucleotide microarrays
    Bignell, GR
    Huang, J
    Greshock, J
    Watt, S
    Butler, A
    West, S
    Grigorova, M
    Jones, KW
    Wei, W
    Stratton, MR
    Futreal, PA
    Weber, B
    Shapero, MH
    Wooster, R
    [J]. GENOME RESEARCH, 2004, 14 (02) : 287 - 295
  • [5] Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data
    Boeva, Valentina
    Popova, Tatiana
    Bleakley, Kevin
    Chiche, Pierre
    Cappo, Julie
    Schleiermacher, Gudrun
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Barillot, Emmanuel
    [J]. BIOINFORMATICS, 2012, 28 (03) : 423 - 425
  • [6] Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization
    Boeva, Valentina
    Zinovyev, Andrei
    Bleakley, Kevin
    Vert, Jean-Philippe
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Barillot, Emmanuel
    [J]. BIOINFORMATICS, 2011, 27 (02) : 268 - 269
  • [7] Chiang DY, 2009, NAT METHODS, V6, P99, DOI [10.1038/nmeth.1276, 10.1038/NMETH.1276]
  • [8] Substantial biases in ultra-short read data sets from high-throughput DNA sequencing
    Dohm, Juliane C.
    Lottaz, Claudio
    Borodina, Tatiana
    Himmelbauer, Heinz
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 (16)
  • [9] Genomic aberrations and survival in chronic lymphocytic leukemia.
    Döhner, H
    Stilgenbauer, S
    Benner, A
    Leupolt, E
    Kröber, A
    Bullinger, L
    Döhner, K
    Bentz, M
    Lichter, P
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2000, 343 (26) : 1910 - 1916
  • [10] The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp UW4
    Duan, Jin
    Jiang, Wei
    Cheng, Zhenyu
    Heikkila, John J.
    Glick, Bernard R.
    [J]. PLOS ONE, 2013, 8 (03):