A rapid PCR method for the detection of slime-producing strains of Staphylococcus epidermidis and S-aureus in periprosthesis infections

被引:56
作者
Arciola, CR
Collamati, S
Donati, E
Montanaro, L
机构
[1] Ist Ortoped Rizzoli, Lab Biocompatib Mat Impianto, I-40136 Bologna, Italy
[2] Univ Bologna, Dept Expt Pathol, I-40126 Bologna, Italy
关键词
ica genes; slime; polymerase chain reaction; PCR; bacterial adhesion; periprosthesis infection; Staphylococcus epidermidis; Staphylococcus aureus;
D O I
10.1097/00019606-200106000-00010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In periprosthesis tissues, Staphylococcus epidermidis produces extracellular polysaccharide slime. Recently it has been shown that S. aureus also produces slime and that both S. epidermidis and S. aureus contain the ica operon responsible for slime production. In the operon, icaA encodes for N-acetylglu taminyltransferase, the enzyme for polysaccharide synthesis. However, co-expression of icaA and icaD is required for full slime synthesis. The slime-producing strains of both S. epidermidis and S. aureus are more virulent and are responsible for severe postsurgical or periprosthesis infections. The authors describe a simple, rapid, and reliable polymerase chain reaction method to detect icaA and icaD. The method was applied to the detection of ica genes on two reference strains, 15 strains each of S. epidermidis and S. aureus from periprosthesis infections and 10 strains from the skin and mucosa of healthy volunteers. icaA and icaD were detectable only in slime-producing strains (tested for slime production on Congo Red agar), and never in nonslime-producing ones. This method is a straightforward way of detecting the slime-producing ability by S. epidermidis and S. aureus. In clinical specimens this polymerase chain reaction method enables rapid diagnosis of virulent slime-producing strains with respect to the traditional culture method on Congo Red agar, which requires much more time. Rapid identification of the virulent properties of the bacterial strain responsible for a staphylococcal infection is crucial for deciding treatment.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 31 条
[1]   Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates [J].
Ammendolia, MG ;
Di Rosa, R ;
Montanaro, L ;
Arciola, CR ;
Baldassarri, L .
JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (10) :3235-3238
[2]  
An Y.H., 2000, HDB BACTERIAL ADHESI, P609
[3]  
An YH, 1998, J BIOMED MATER RES, V43, P338, DOI 10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO
[4]  
2-B
[5]  
Arciola CR, 1998, J BIOMED MATER RES, V42, P1
[6]   Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study [J].
Arciola, CR ;
Montanaro, L ;
Moroni, A ;
Giordano, M ;
Pizzoferrato, A ;
Donati, ME .
BIOMATERIALS, 1999, 20 (04) :323-327
[7]  
Arciola CR, 1999, MICROBIOLOGICA, V22, P337
[8]   INVITRO AND INVIVO COMPARATIVE COLONIZATION OF STAPHYLOCOCCUS-AUREUS AND STAPHYLOCOCCUS-EPIDERMIDIS ON ORTHOPEDIC IMPLANT MATERIALS [J].
BARTH, E ;
MYRVIK, QM ;
WAGNER, W ;
GRISTINA, AG .
BIOMATERIALS, 1989, 10 (05) :325-328
[9]   ADHERENCE OF SLIME-PRODUCING STRAINS OF STAPHYLOCOCCUS-EPIDERMIDIS TO SMOOTH SURFACES [J].
CHRISTENSEN, GD ;
SIMPSON, WA ;
BISNO, AL ;
BEACHEY, EH .
INFECTION AND IMMUNITY, 1982, 37 (01) :318-326
[10]   ADHERENCE OF COAGULASE-NEGATIVE STAPHYLOCOCCI TO PLASTIC TISSUE-CULTURE PLATES - A QUANTITATIVE MODEL FOR THE ADHERENCE OF STAPHYLOCOCCI TO MEDICAL DEVICES [J].
CHRISTENSEN, GD ;
SIMPSON, WA ;
YOUNGER, JJ ;
BADDOUR, LM ;
BARRETT, FF ;
MELTON, DM ;
BEACHEY, EH .
JOURNAL OF CLINICAL MICROBIOLOGY, 1985, 22 (06) :996-1006