Quasistatic crack growth in nonlinear elasticity

被引:245
作者
Dal Maso, G
Francfort, GA
Toader, R
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Paris 13, LPMTM, F-93430 Villetaneuse, France
[3] Dipartimento Ingn Civile, I-33100 Udine, Italy
关键词
D O I
10.1007/s00205-004-0351-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [19]. We consider the case of n-dimensional nonlinear elasticity, for an arbitrary n >= 1, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.
引用
收藏
页码:165 / 225
页数:61
相关论文
共 31 条
[11]  
DALMASO G, 2004, QUASISTATIC CRACK GR
[12]  
DALMASO G, UNPUB SOME QUALITATI
[13]  
De Giorgi E., 1988, ATTI ACCAD NAZ SFMN, V82, P199
[14]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218
[15]  
Doob J.L., 1953, Stochastic processes
[16]  
Federer H., 2014, GEOMETRIC MEASURE TH
[17]   Revisiting brittle fracture as an energy minimization problem [J].
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) :1319-1342
[18]  
FRANCFORT GA, 1993, EUR J MECH A-SOLID, V12, P149
[19]   Existence and convergence for quasi-static evolution in brittle fracture [J].
Francfort, GA ;
Larsen, CJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (10) :1465-1500
[20]  
Griffits A.A., 1920, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, V221, P163, DOI DOI 10.1098/RSTA.1921.0006