Built-In Mechanical Stress in Viral Shells

被引:54
作者
Carrasco, C. [2 ,4 ]
Luque, A. [3 ]
Hernando-Perez, M. [1 ]
Miranda, R. [4 ]
Carrascosa, J. L. [4 ]
Serena, P. A. [2 ]
de Ridder, M. [5 ,6 ]
Raman, A. [5 ,6 ]
Gomez-Herrero, J. [1 ]
Schaap, I. A. T. [7 ]
Reguera, D. [3 ]
de Pablo, P. J. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[2] CSIC, Inst Ciencia Mat Madrid, Madrid, Spain
[3] Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain
[4] CSIC, Ctr Nacl Biotecnol, Madrid, Spain
[5] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[7] Univ Gottingen, Fak Phys, Phys Inst 3, Gottingen, Germany
关键词
BACTERIOPHAGE PHI-29; FORCE MICROSCOPY; DNA; VIRUS; PRESSURE; MICROTUBULES; ELASTICITY; EJECTION; CAPSIDS;
D O I
10.1016/j.bpj.2011.01.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the phi 29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated phi 29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the phi 29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.
引用
收藏
页码:1100 / 1108
页数:9
相关论文
共 56 条
[51]   Structural changes of bacteriophage φ29 upon DNA packaging and release [J].
Xiang, Ye ;
Morais, Marc C. ;
Battisti, Anthony J. ;
Grimes, Shelley ;
Jardine, Paul J. ;
Anderson, Dwight L. ;
Rossmann, Michael G. .
EMBO JOURNAL, 2006, 25 (21) :5229-5239
[52]   Mechanical properties of viral capsids [J].
Zandi, R ;
Reguera, D .
PHYSICAL REVIEW E, 2005, 72 (02)
[53]   Classical nucleation theory of virus capsids [J].
Zandi, R ;
van der Schoot, P ;
Reguera, D ;
Kegel, W ;
Reiss, H .
BIOPHYSICAL JOURNAL, 2006, 90 (06) :1939-1948
[54]   Origin of icosahedral symmetry in viruses [J].
Zandi, R ;
Reguera, D ;
Bruinsma, RF ;
Gelbart, WM ;
Rudnick, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15556-15560
[55]   Mechanical Properties of the Icosahedral Shell of Southern Bean Mosaic Virus: A Molecular Dynamics Study [J].
Zink, Mareike ;
Grubmueller, Helmut .
BIOPHYSICAL JOURNAL, 2009, 96 (04) :1350-1363
[56]   Are weak protein-protein interactions the general rule in capsid assembly? [J].
Zlotnick, A .
VIROLOGY, 2003, 315 (02) :269-274