Fractal geometry of quantum spacetime at large scales

被引:28
作者
Antoniadis, I [1 ]
Mazur, PO
Mottola, E
机构
[1] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[2] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA
[3] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1016/S0370-2693(98)01375-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the intrinsic Hausdorff dimension of spacetime at the infrared fixed point of the quantum conformal factor in 4D gravity. The fractal dimension is defined by the appropriate covariant diffusion equation in four dimensions and is determined by the coefficient of the Gauss-Bonnet term in the trace anomaly to be generally greater than 4. In addition to being testable in simplicial simulations, this scaling behavior suggests a physical mechanism for the screening of the effective cosmological 'constant' and inverse Newtonian coupling at very large distance scales, which has implications for the dark matter content and large scale structure of the universe. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 41 条
[11]   Criticality and scaling in 4D quantum gravity [J].
Antoniadis, I ;
Mazur, PO ;
Mottola, E .
PHYSICS LETTERS B, 1997, 394 (1-2) :49-56
[12]   CONFORMAL SYMMETRY AND CENTRAL CHARGES IN 4 DIMENSIONS [J].
ANTONIADIS, I ;
MAZUR, PO ;
MOTTOLA, E .
NUCLEAR PHYSICS B, 1992, 388 (03) :627-647
[13]   4-DIMENSIONAL QUANTUM-GRAVITY IN THE CONFORMAL SECTOR [J].
ANTONIADIS, I ;
MOTTOLA, E .
PHYSICAL REVIEW D, 1992, 45 (06) :2013-2025
[14]   Physical states of the quantum conformal factor [J].
Antoniadis, I ;
Mazur, PO ;
Mottola, E .
PHYSICAL REVIEW D, 1997, 55 (08) :4770-4784
[15]   Quantum diffeomorphisms and conformal symmetry [J].
Antoniadis, I ;
Mazur, PO ;
Mottola, E .
PHYSICAL REVIEW D, 1997, 55 (08) :4756-4769
[16]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[17]  
BRILLOIRE A, 1986, NUCL PHYS B, V275, P617
[18]  
BUCHBINDER IL, 1985, PHYS LETT B, V162, P93
[19]   PHASE-STRUCTURE OF 4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
CATTERALL, S ;
KOGUT, J ;
RENKEN, R .
PHYSICS LETTERS B, 1994, 328 (3-4) :277-283
[20]   SCALING AND THE FRACTAL GEOMETRY OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
CATTERALL, S ;
THORLEIFSSON, G ;
BOWICK, M ;
JOHN, V .
PHYSICS LETTERS B, 1995, 354 (1-2) :58-68