Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2)

被引:585
作者
Wang, Lingle [1 ]
Friesner, Richard A. [1 ]
Berne, B. J. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
ENERGY LANDSCAPE; BETA-HAIRPIN; SYSTEMS;
D O I
10.1021/jp204407d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A small change in the Hamiltonian scaling in Replica Exchange with Solute Tempering (REST) is found to improve its sampling efficiency greatly, especially for the sampling of aqueous protein solutions in which there are large-scale solute conformation changes. Like the original REST (REST 1), the new version (which we call REST2) also bypasses the poor scaling with system size of the standard Temperature Replica Exchange Method (TREM), reducing the number of replicas (parallel processes) from what must be used in TREM. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST2 is compared with TREM and with REST1 for the folding of the trpcage and beta-hairpin in water. The comparisons confirm that REST2 greatly reduces the number of CPUs required by regular replica exchange and greatly increases the sampling efficiency over REST1. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water.
引用
收藏
页码:9431 / 9438
页数:8
相关论文
共 17 条
[1]   A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling [J].
Affentranger, R ;
Tavernelli, I ;
Di Iorio, EE .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2006, 2 (02) :217-228
[2]  
Bowers K. J., 2006, P 2006 ACM IEEE C SU
[3]   On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction [J].
Fukunishi, H ;
Watanabe, O ;
Takada, S .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (20) :9058-9067
[4]  
García AE, 2001, PROTEINS, V42, P345, DOI 10.1002/1097-0134(20010215)42:3<345::AID-PROT50>3.0.CO
[5]  
2-H
[6]   Replica exchange with solute tempering: Efficiency in large scale systems [J].
Huang, Xuhui ;
Hagen, Morten ;
Kim, Byungchan ;
Friesner, Richard A. ;
Zhou, Ruhong ;
Berne, B. J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (19) :5405-5410
[7]   Exchange Monte Carlo method and application to spin glass simulations [J].
Hukushima, K ;
Nemoto, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) :1604-1608
[8]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935
[9]   Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides [J].
Kaminski, GA ;
Friesner, RA ;
Tirado-Rives, J ;
Jorgensen, WL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (28) :6474-6487
[10]   Replica exchange with solute tempering: A method for sampling biological systems in explicit water [J].
Liu, P ;
Kim, B ;
Friesner, RA ;
Berne, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (39) :13749-13754