Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex

被引:84
作者
Milovanov, AV
Rasmussen, JJ
机构
[1] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[2] Riso Natl Lab, Dept Opt & Plasma Res, DK-4000 Roskilde, Denmark
基金
俄罗斯基础研究基金会;
关键词
fractional kinetics; phase transition; long-range dependence;
D O I
10.1016/j.physleta.2005.01.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equations built on fractional derivatives prove to be a powerful tool in the description of complex systems when the effects of singularity, fractal supports, and long-range dependence play a role. In this Letter, we advocate an application of the fractional derivative formalism to a fairly general class of critical phenomena when the organization of the system near the phase transition point is influenced by a competing nonlocal ordering. Fractional modifications of the free energy functional at criticality and of the widely known Ginzburg-Landau equation central to the classical Landau theory of second-type phase transitions are discussed in some detail. An implication of the fractional Ginzburg-Landau equation is a renormalization of the transition temperature owing to the nonlocality present. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 55 条
[21]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[22]   FRACTAL RANDOM-WALKS [J].
HUGHES, BD ;
MONTROLL, EW ;
SHLESINGER, MF .
JOURNAL OF STATISTICAL PHYSICS, 1982, 28 (01) :111-126
[23]  
JENSEN HJ, 1998, SELF ORG CRITICALITY
[24]   Competing order in the mixed state of high-temperature superconductors [J].
Kivelson, SA ;
Lee, DH ;
Fradkin, E ;
Oganesyan, V .
PHYSICAL REVIEW B, 2002, 66 (14) :1-8
[25]   Beyond Brownian motion [J].
Klafter, J ;
Shlesinger, MF ;
Zumofen, G .
PHYSICS TODAY, 1996, 49 (02) :33-39
[27]   Evidence of fractional transport in point vortex flow [J].
Leoncini, X ;
Kuznetsov, L ;
Zaslavsky, GM .
CHAOS SOLITONS & FRACTALS, 2004, 19 (02) :259-273
[28]  
LIFSHITZ EM, 1978, STAT PHYS THEORETICA, V9
[29]  
Little W. A., 1970, J POLYMER SCI C, V29, P17
[30]   INTRODUCTION TO MULTIFRACTALS IN DYNAMIC-SYSTEMS THEORY AND FULLY-DEVELOPED FLUID TURBULENCE [J].
MCCAULEY, JL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (05) :225-266