Advances in imaging mouse tumour models in vivo

被引:134
作者
Lyons, SK [1 ]
机构
[1] Xenogen Corp, Dept Oncol, Alameda, CA 94501 USA
关键词
imaging; tumour; mouse model; non-invasive;
D O I
10.1002/path.1697
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Significant progress has been made recently in the variety of ways that cancer can be nonimaged invasively in murine tumour models. The development and continued refinement of specialized responsible that enable hardware for an array of small animal imaging methodologies are only partly So too has been the development of new imaging techniques and materials specific, highly sensitive and quantitative measurement of a wide range of tumour-related parameters. Included amongst these new materials are imaging probes that selectively accumulate in tumours, or that become activated by tumour-specific molecules in vivo. Other tumour imaging strategies have been developed that rely upon the detection of reporter transgene expression in vivo, and these too have made a significant impact on both the versatility and the specificity of tumour imaging in living mice. The biological implications resulting from these latest advances are presented here, with particular emphasis on those associated with MRI, PET, SPECT, BLI, and fluorescence-based imaging modalities. Taken together, these advances in tumour imaging are set to have a profound impact on our basic understanding of in vivo tumour biology and will radically alter the application of mouse tumour models in the laboratory. Copyright (C) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley Sons, Ltd.
引用
收藏
页码:194 / 205
页数:12
相关论文
共 94 条
[61]   Molecular imaging of drug-modulated protein-protein interactions in living subjects [J].
Paulmurugan, R ;
Massoud, TF ;
Huang, J ;
Gambhir, SS .
CANCER RESEARCH, 2004, 64 (06) :2113-2119
[62]   Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies [J].
Paulmurugan, R ;
Umezawa, Y ;
Gambhir, SS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15608-15613
[63]   Imaging reversal of multidrug resistance in living mice with bioluminescence:: MDR1 P-glycoprotein transports coelenterazine [J].
Pichler, A ;
Prior, JL ;
Piwnica-Worms, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (06) :1702-1707
[64]   A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging [J].
Ponomarev, V ;
Doubrovin, M ;
Serganova, I ;
Vider, J ;
Shavrin, A ;
Beresten, T ;
Ivanova, A ;
Ageyeva, L ;
Tourkova, V ;
Balatoni, J ;
Bornmann, W ;
Blasberg, R ;
Tjuvajev, JG .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2004, 31 (05) :740-751
[65]   Imaging tri-fusion multimodality reporter gene expression in living subjects [J].
Ray, P ;
De, A ;
Min, JJ ;
Tsien, RY ;
Gambhir, SS .
CANCER RESEARCH, 2004, 64 (04) :1323-1330
[66]   Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression [J].
Ray, S ;
Paulmurugan, R ;
Hildebrandt, I ;
Iyer, M ;
Wu, L ;
Carey, M ;
Gambhir, SS .
HUMAN GENE THERAPY, 2004, 15 (07) :681-690
[67]   Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging [J].
Rehemtulla, A ;
Stegman, LD ;
Cardozo, SJ ;
Gupta, S ;
Hall, DE ;
Contag, CH ;
Ross, BD .
NEOPLASIA, 2000, 2 (06) :491-495
[68]   Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy [J].
Rehemtulla, Alnawaz ;
Hall, Daniel E. ;
Stegman, Lauren D. ;
Prasad, Uttara ;
Chen, Grace ;
Bhojani, Mahaveer Swaroop ;
Chenevert, Thomas L. ;
Ross, Brian D. .
MOLECULAR IMAGING, 2002, 1 (01) :43-62
[69]   Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/- p53-/- mice [J].
Romer, JT ;
Kimura, H ;
Magdaleno, S ;
Sasai, K ;
Fuller, C ;
Baines, H ;
Connelly, M ;
Stewart, CF ;
Gould, S ;
Rubin, LL ;
Curran, T .
CANCER CELL, 2004, 6 (03) :229-240
[70]  
Ross BD, 2003, MOL CANCER THER, V2, P581