Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 Å resolution

被引:287
作者
Ding, JP
Das, K
Hsiou, Y
Sarafianos, SG
Clark, AD
Jacobo-Molina, A
Tantillo, C
Hughes, SH
Arnold, E
机构
[1] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem, Piscataway, NJ 08854 USA
[3] NCI, ABL Basic Res Program, Frederick Canc Res & Dev Ctr, Frederick, MD 21702 USA
关键词
AIDS; polymerase active site; polymerase structure; protein-nucleic acid interaction; X-ray crystallography;
D O I
10.1006/jmbi.1998.2208
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) complexed with a 19-mer/18-mer double-stranded DNA template-primer (dsDNA) and the Fab fragment of monoclonal antibody 28 (Fab28) has been refined at 2.8 Angstrom resolution. The structures of the polymerase active site and neighboring regions are described in detail and a number of novel insights into mechanisms of polymerase catalysis and drug inhibition are presented. The three catalytically essential amino acid residues (Asp110, Asp185, and Asp186) are located dose to the 3' terminus of the primer strand. Observation of a hydrogen bond between the 3'-OH of the primer terminus and the side-chain of Asp185 suggests that the carboxylate of Asp185 could act as a general base in initiating the nucleophilic attack during polymerization. Nearly all of the close protein-DNA interactions involve atoms of the sugar-phosphate backbone of the nucleic acid. However, the phenoxyl side-chain of Tyr183, which is part of the conserved YMDD motif, has hydrogen-bonding interactions with nucleotide bases of the second duplex base-pair and is predicted to have at least one hydrogen bond with all Watson-Crick base-pairs at this position. Comparison of the structure of the active site region in the HIV-1 RT/dsDNA complex with all other HIV-1 RT structures suggests that template-primer binding is accompanied by significant conformational changes of the YMDD motif that may be relevant for mechanisms of both polymerization and inhibition by non-nucleoside inhibitors. interactions of the "primer grip" (the beta 12-beta 13 hairpin) with the 3' terminus of the primer strand primarily involve the main-chain atoms of Met230 and Gly231 and the primer terminal phosphate. Alternative positions of the primer grip observed in different HIV-1 RT structures may be related to conformational changes that normally occur during DNA polymerization and translocation. Ln the vicinity of the polymerase active site, there are a number of aromatic residues that are involved in energetically favorable pi-pi interactions and may be involved in the transitions between different stages of the catalytic process. The protein structural elements primarily responsible for precise positioning of the template-primer (including the primer grip, template grip, and helices alpha H and alpha I of the p66 thumb) can be thought of functioning as a "translocation track" that guides the relative movement of nucleic acid and protein during polymerization. (C) 1998 Academic Press.
引用
收藏
页码:1095 / 1111
页数:17
相关论文
共 95 条
  • [1] A SEQUENCE MOTIF IN MANY POLYMERASES
    ARGOS, P
    [J]. NUCLEIC ACIDS RESEARCH, 1988, 16 (21) : 9909 - 9916
  • [2] STRUCTURE OF HIV-1 REVERSE-TRANSCRIPTASE DNA COMPLEX AT 7-A RESOLUTION SHOWING ACTIVE-SITE LOCATIONS
    ARNOLD, E
    JACOBOMOLINA, A
    NANNI, RG
    WILLIAMS, RL
    LU, XD
    DING, JP
    CLARK, AD
    ZHANG, AQ
    FERRIS, AL
    CLARK, P
    HIZI, A
    HUGHES, SH
    [J]. NATURE, 1992, 357 (6373) : 85 - 89
  • [3] Arnold E, 1996, Drug Des Discov, V13, P29
  • [4] Arts EJ, 1998, PROG NUCLEIC ACID RE, V58, P339
  • [5] Mutational studies of human immunodeficiency virus type 1 reverse transcriptase: The involvement of residues 183 and 184 in the fidelity of DNA synthesis
    Bakhanashvili, M
    Avidan, O
    Hizi, A
    [J]. FEBS LETTERS, 1996, 391 (03) : 257 - 262
  • [6] BEARD WA, 1994, J BIOL CHEM, V269, P28091
  • [7] REDUCED FRAMESHIFT FIDELITY AND PROCESSIVITY OF HIV-1 REVERSE-TRANSCRIPTASE MUTANTS CONTAINING ALANINE SUBSTITUTIONS IN HELIX-H OF THE THUMB SUBDOMAIN
    BEBENEK, K
    BEARD, WA
    CASASFINET, JR
    KIM, HR
    DARDEN, TA
    WILSON, SH
    KUNKEL, TA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) : 19516 - 19523
  • [8] A minor groove binding track in reverse transcriptase
    Bebenek, K
    Beard, WA
    Darden, TA
    Li, LP
    Prasad, R
    Luxon, BA
    Gorenstein, DG
    Wilson, SH
    Kunkel, TA
    [J]. NATURE STRUCTURAL BIOLOGY, 1997, 4 (03) : 194 - 197
  • [9] CASSETTE MUTAGENESIS OF THE REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1
    BOYER, PL
    FERRIS, AL
    HUGHES, SH
    [J]. JOURNAL OF VIROLOGY, 1992, 66 (02) : 1031 - 1039
  • [10] Boyer PL, 1998, ANTIMICROB AGENTS CH, V42, P447