The sentinel role of the airway epithelium in asthma pathogenesis

被引:342
作者
Holgate, Stephen T. [1 ,2 ]
机构
[1] Southampton Gen Hosp, Sch Med, Div Infect Inflammat & Immun, Southampton SO16 6YD, Hants, England
[2] Univ Southampton, Div Infect Inflammat & Immun, Sch Med, Southampton, Hants, England
关键词
asthma; epithelium; inflammation; remodeling; environmental injury; origins; progression; phenotypes; RETICULAR BASEMENT-MEMBRANE; GOBLET CELL HYPERPLASIA; EPIDERMAL-GROWTH-FACTOR; CHEMOKINE RECEPTOR 4; DENDRITIC CELLS; BRONCHIAL EPITHELIUM; INCREASED EXPRESSION; EOSINOPHILIC INFLAMMATION; SUBEPITHELIAL FIBROSIS; ENVIRONMENTAL-FACTORS;
D O I
10.1111/j.1600-065X.2011.01030.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The adoption of the concept that asthma is primarily a disease most frequently associated with elaboration of T-helper 2 (Th2)-type inflammation has led to the widely held concept that its origins, exacerbation, and persistence are allergen driven. Taking aside the asthma that is expressed in non-allergic individuals leaves the great proportion of asthma that is associated with allergy (or atopy) and that often has its onset in early childhood. Evidence is presented that asthma is primarily an epithelial disorder and that its origin as well as its clinical manifestations have more to do with altered epithelial physical and functional barrier properties than being purely linked to allergic pathways. In genetically susceptible individuals, impaired epithelial barrier function renders the airways vulnerable to early life virus infection, and this in turn provides the stimulus to prime immature dendritic cells toward directing a Th2 response and local allergen sensitization. Continued epithelial susceptibility to environmental insults such as viral, allergen, and pollutant exposure and impaired repair responses leads to asthma persistence and provides the mediator and growth factor microenvironment for persistence of inflammation and airway wall remodeling. Increased deposition of matrix in the epithelial lamina reticularis provides evidence for ongoing epithelial barrier dysfunction, while physical distortion of the epithelium consequent upon repeated bronchoconstriction provides additional stimuli for remodeling. This latter response initially serves a protective function but, if exaggerated, may lead to fixed airflow obstruction associated with more severe and chronic disease. Dual pathways in the origins, persistence, and progression of asthma help explain why anti-inflammatory treatments fail to influence the natural history of asthma in childhood and only partially does so in chronic severe disease. Positioning the airway epithelium as fundamental to the origins and persistence of asthma provides a rationale for pursuit of therapeutics that increase the resistance of the airways to environmental insults rather than concentrating all effort on suppressing inflammation.
引用
收藏
页码:205 / 219
页数:15
相关论文
共 175 条
[41]   Angiogenesis and lymphangiogenesis in bronchial asthma [J].
Detoraki, A. ;
Granata, F. ;
Staibano, S. ;
Rossi, F. W. ;
Marone, G. ;
Genovese, A. .
ALLERGY, 2010, 65 (08) :946-958
[42]   Effect of inhaled corticosteroids on episodes of wheezing associated with viral infection in school age children: randomised double blind placebo controlled trial [J].
Doull, IJM ;
Lampe, FC ;
Smith, S ;
Schreiber, J ;
Freezer, NJ ;
Holgate, ST .
BMJ-BRITISH MEDICAL JOURNAL, 1997, 315 (7112) :858-862
[43]  
Esnault S, 2002, ARCH IMMUNOL THER EX, V50, P121
[44]   MEDICAL PROGRESS Airway Mucus Function and Dysfunction [J].
Fahy, John V. ;
Dickey, Burton F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (23) :2233-2247
[45]   Epithelial stress and structural remodelling in childhood asthma [J].
Fedorov, IA ;
Wilson, SJ ;
Davies, DE ;
Holgate, ST .
THORAX, 2005, 60 (05) :389-394
[46]   Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress [J].
Fitzpatrick, Anne M. ;
Teague, W. Gerald ;
Holguin, Fernando ;
Yeh, Mary ;
Brown, Lou Ann S. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2009, 123 (01) :146-152
[47]   Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics [J].
Flood-Page, P ;
Menzies-Gow, A ;
Phipps, S ;
Ying, S ;
Wangoo, A ;
Ludwig, MS ;
Barnes, N ;
Robinson, D ;
Kay, AB .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (07) :1029-1036
[48]  
FLOODPAGE PT, 2001, AM J RESP CRIT CARE, V67, P199
[49]   Increased expression of ADAM33 and ADAM8 with disease progression in asthma [J].
Foley, Susan C. ;
Mogas, Andrea K. ;
Olivenstein, Ron ;
Fiset, Pierre O. ;
Chakir, Jamila ;
Bourbeau, Jean ;
Ernst, Pierre ;
Lemiere, Catherine ;
Martin, James G. ;
Hamid, Qutayba .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2007, 119 (04) :863-871
[50]  
FRAENKEL DJ, 1995, AM J RESP CRIT CARE, V151, P879