Two-dimensional patterning by a trapping/depletion mechanism:: The role of TTG1 and GL3 in Arabidopsis trichome formation

被引:117
作者
Bouyer, Daniel [1 ]
Geier, Florian [2 ]
Kragler, Friedrich [3 ]
Schnittger, Arp [4 ]
Pesch, Martina [1 ]
Wester, Katja [1 ]
Balkunde, Rachappa [1 ]
Timmer, Jens [5 ]
Fleck, Christian [5 ]
Huelskamp, Martin [1 ]
机构
[1] Univ Cologne, Bot Inst 3, Cologne, Germany
[2] Univ Freiburg, Dept Biol, Freiburg, Germany
[3] Univ Vienna, Dept Biochem, Max F Perutz Labs, Vienna, Austria
[4] Max Planck Inst Zuchtungsforsch, D-5000 Cologne, Germany
[5] Univ Freiburg, Dept Math & Phys, Freiburg, Germany
来源
PLOS BIOLOGY | 2008年 / 6卷 / 06期
关键词
D O I
10.1371/journal.pbio.0060141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trichome patterning in Arabidopsis serves as a model system to study how single cells are selected within a field of initially equivalent cells. Current models explain this pattern by an activator-inhibitor feedback loop. Here, we report that also a newly discovered mechanism is involved by which patterning is governed by the removal of the trichome-promoting factor TRANSPARENT TESTA GLABRA1 (TTG1) from non-trichome cells. We demonstrate by clonal analysis and misexpression studies that Arabidopsis TTG1 can act non-cell-autonomously and by microinjection experiments that TTG1 protein moves between cells. While TTG1 is expressed ubiquitously, TTG1-YFP protein accumulates in trichomes and is depleted in the surrounding cells. TTG1-YFP depletion depends on GLABRA3 (GL3), suggesting that the depletion is governed by a trapping mechanism. To study the potential of the observed trapping/depletion mechanism, we formulated a mathematical model enabling us to evaluate the relevance of each parameter and to identify parameters explaining the paradoxical genetic finding that strong ttg1 alleles are glabrous, while weak alleles exhibit trichome clusters.
引用
收藏
页码:1166 / 1177
页数:12
相关论文
共 58 条
[1]  
[Anonymous], MATH MODELS BIOL
[2]   TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana [J].
Baudry, A ;
Heim, MA ;
Dubreucq, B ;
Caboche, M ;
Weisshaar, B ;
Lepiniec, L .
PLANT JOURNAL, 2004, 39 (03) :366-380
[3]   TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana [J].
Baudry, Antoine ;
Caboche, Michel ;
Lepiniec, Loic .
PLANT JOURNAL, 2006, 46 (05) :768-779
[4]   The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis [J].
Bernhardt, C ;
Zhao, MZ ;
Gonzalez, A ;
Lloyd, A ;
Schiefelbein, J .
DEVELOPMENT, 2005, 132 (02) :291-298
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   Reaction and diffusion on growing domains: Scenarios for robust pattern formation [J].
Crampin, EJ ;
Gaffney, EA ;
Maini, PK .
BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (06) :1093-1120
[7]   Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states [J].
Crawford, KM ;
Zambryski, PC .
PLANT PHYSIOLOGY, 2001, 125 (04) :1802-1812
[8]   Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport [J].
Crawford, KM ;
Zambryski, PC .
CURRENT BIOLOGY, 2000, 10 (17) :1032-1040
[9]   An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants [J].
Cui, Hongchang ;
Levesque, Mitchell P. ;
Vernoux, Teva ;
Jung, Jee W. ;
Paquette, Alice J. ;
Gallagher, Kimberly L. ;
Wang, Jean Y. ;
Blilou, Ikram ;
Scheres, Ben ;
Benfey, Philip N. .
SCIENCE, 2007, 316 (5823) :421-425
[10]   A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis [J].
Esch, JJ ;
Chen, M ;
Sanders, M ;
Hillestad, M ;
Ndkium, S ;
Idelkope, B ;
Neizer, J ;
Marks, MD .
DEVELOPMENT, 2003, 130 (24) :5885-5894