Active-learning strategies in computer-assisted drug discovery

被引:163
作者
Reker, Daniel [1 ]
Schneider, Gisbert [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
关键词
SUPPORT VECTOR MACHINES; GENETIC ALGORITHM; LEAD OPTIMIZATION; COMBINATORIAL LIBRARIES; CHEMICAL ENTITIES; DESIGN; INHIBITORS; EXPERIMENTATION; VISUALIZATION; GENERATION;
D O I
10.1016/j.drudis.2014.12.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
High-throughput compound screening is time and resource consuming, and considerable effort is invested into screening compound libraries, profiling, and selecting the most promising candidates for further testing. Active-learning methods assist the selection process by focusing on areas of chemical space that have the greatest chance of success while considering structural novelty. The core feature of these algorithms is their ability to adapt the structure-activity landscapes through feedback. Instead of full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of the various computational active-learning approaches and outline their potential for drug discovery.
引用
收藏
页码:458 / 465
页数:8
相关论文
共 63 条
[11]   Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning [J].
Danziger, Samuel A. ;
Baronio, Roberta ;
Ho, Lydia ;
Hall, Linda ;
Salmon, Kirsty ;
Hatfield, G. Wesley ;
Kaiser, Peter ;
Lathrop, Richard H. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (09)
[12]  
De Grave K., 2008, Benelearn 08, The Annual Belgian-Dutch Machine Learning Conference, V2008, P55
[13]  
De Grave K, 2008, LECT NOTES COMPUT SC, V5255, P185, DOI 10.1007/978-3-540-88411-8_19
[14]   Rapid Discovery of a Novel Series of Abl Kinase Inhibitors by Application of an Integrated Microfluidic Synthesis and Screening Platform [J].
Desai, Bimbisar ;
Dixon, Karen ;
Farrant, Elizabeth ;
Feng, Qixing ;
Gibson, Karl R. ;
van Hoorn, Willem P. ;
Mills, James ;
Morgan, Trevor ;
Parry, David M. ;
Ramjee, Manoj K. ;
Selway, Christopher N. ;
Tarver, Gary J. ;
Whitlock, Gavin ;
Wrightt, Adrian G. .
JOURNAL OF MEDICINAL CHEMISTRY, 2013, 56 (07) :3033-3047
[15]  
Donmez P, 2007, LECT NOTES ARTIF INT, V4701, P116
[16]   Extraction and visualization of potential pharmacophore points using support vector machines: Application to ligand-based virtual screening for COX-2 inhibitors [J].
Franke, L ;
Byvatov, E ;
Werz, O ;
Steinhilber, D ;
Schneider, P ;
Schneider, G .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (22) :6997-7004
[17]   Playing dirty [J].
Frantz, S .
NATURE, 2005, 437 (7061) :942-943
[18]   Virtual screening system for finding structurally diverse hits by active learning [J].
Fujiwara, Yukiko ;
Yamashita, Yoshiko ;
Osoda, Tsutomu ;
Asogawa, Minoru ;
Fukushima, Chiaki ;
Asao, Masaaki ;
Shimadzu, Hideshi ;
Nakao, Kazuya ;
Shimizu, Ryo .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (04) :930-940
[19]   ChEMBL: a large-scale bioactivity database for drug discovery [J].
Gaulton, Anna ;
Bellis, Louisa J. ;
Bento, A. Patricia ;
Chambers, Jon ;
Davies, Mark ;
Hersey, Anne ;
Light, Yvonne ;
McGlinchey, Shaun ;
Michalovich, David ;
Al-Lazikani, Bissan ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D1100-D1107
[20]  
Gobbi A, 1998, BIOTECHNOL BIOENG, V61, P47, DOI 10.1002/(SICI)1097-0290(199824)61:1<47::AID-BIT9>3.0.CO