Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation

被引:150
作者
González, J [1 ]
Rojas, I [1 ]
Ortega, J [1 ]
Pomares, H [1 ]
Fernández, J [1 ]
Díaz, AF [1 ]
机构
[1] Univ Granada, ETS Ingn Informat, Dept Comp Architecture & Comp Technol, E-18071 Granada, Spain
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2003年 / 14卷 / 06期
关键词
evolutionary computation; neural networks; radial basis functions (RBFs); orthogonal transformations; heuristics;
D O I
10.1109/TNN.2003.820657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two well-known matrix transformations: singular value decomposition (SVD) and orthogonal least squares (OLS), which have been used to define new mutation operators that produce local or global modifications in the radial basis functions (RBFs) of the networks (the individuals in the population in the evolutionary, procedure). After analyzing the efficiency of the different operators, we have shown that the global mutation operators yield an improved procedure to adjust the parameters of the RBFNNs.
引用
收藏
页码:1478 / 1495
页数:18
相关论文
共 86 条
[61]   APPROXIMATION AND RADIAL-BASIS-FUNCTION NETWORKS [J].
PARK, J ;
SANDBERG, IW .
NEURAL COMPUTATION, 1993, 5 (02) :305-316
[62]  
PARKE AL, 1991, INFLAMMOPHARMACOLOGY, V1, P3
[63]   The enhanced LBG algorithm [J].
Patané, Giuseppe ;
Russo, Marco .
Neural Networks, 2001, 14 (09) :1219-1237
[64]   A Resource-Allocating Network for Function Interpolation [J].
Platt, John .
NEURAL COMPUTATION, 1991, 3 (02) :213-225
[65]   Structure identification in complete rule-based fuzzy systems [J].
Pomares, H ;
Rojas, I ;
González, J ;
Prieto, A .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (03) :349-359
[66]   A systematic approach to a self-generating fuzzy rule-table for function approximation [J].
Pomares, H ;
Rojas, I ;
Ortega, J ;
Gonzalez, J ;
Prieto, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2000, 30 (03) :431-447
[67]  
POMARES H, 2000, THESIS U GRANADA SPA
[68]  
Rendon MV, 1997, P 7 INT C GEN ALG, P658
[69]   Analysis of the functional block involved in the design of radial basis function networks [J].
Rojas, I ;
Pomares, H ;
Gonzáles, J ;
Bernier, JL ;
Ros, E ;
Pelayo, FJ ;
Prieto, A .
NEURAL PROCESSING LETTERS, 2000, 12 (01) :1-17
[70]  
Rojas I, 2000, Int J Neural Syst, V10, P353, DOI 10.1142/S0129065700000351