Crystal structures of the NO- and CO-bound heme oxygenase from Neisseriae meningitidis -: Implications for O2 activation

被引:57
作者
Friedman, J
Lad, L
Deshmukh, R
Li, HY
Wilks, A
Poulos, TL [1 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Program Macromol Struct, Irvine, CA 92697 USA
[4] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
关键词
D O I
10.1074/jbc.M302985200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heme oxygenases catalyze the oxidation of heme to biliverdin, carbon monoxide, and free iron while playing a critical role in mammalian heme homeostasis. Pathogenic bacteria such as Neisseriae meningitidis also produce heme oxygenase as part of a mechanism to mine host iron. The key step in heme oxidation is the regioselective oxidation of the heme alpha-meso-carbon by an activated Fe(III)-OOH complex. The structures of various diatomic ligands bound to the heme iron can mimic the dioxygen complex and provide important insights on the mechanism of O-2 activation. Here we report the crystal structures of N. meningitidis heme oxygenase (nm-HO) in the Fe(II), Fe(II)-CO, and Fe(II)-NO states and compare these to the NO complex of human heme oxygenase-1 ( Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz de Montellano, P. R., and Poulos, T. L. (2003) J. Mol. Biol. 330, 527 - 538). Coordination of NO or CO results in a reorientation of Arg-77 that enables Arg-77 to participate in an active site H-bonded network involving a series of water molecules. One of these water molecules directly H-bonds to the Fe( II)- linked ligand and very likely serves as the proton source required for oxygen activation. Although the active site residues differ between nm-HO and human HO-1, the close similarity in the H-bonded water network suggests a common mechanism shared by all heme oxygenases.
引用
收藏
页码:34654 / 34659
页数:6
相关论文
共 38 条
[11]   Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury [J].
Doré, S ;
Takahashi, M ;
Ferris, CD ;
Hester, LD ;
Guastella, D ;
Snyder, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :2445-2450
[12]   Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme [J].
Friebe, A ;
Schultz, G ;
Koesling, D .
EMBO JOURNAL, 1996, 15 (24) :6863-6868
[13]   The binding of carbon monoxide and nitric oxide to leghaemoglobin in comparison with other haemoglobins [J].
Harutyunyan, EH ;
Safonova, TN ;
Kuranova, IP ;
Popov, AN ;
Teplyakov, AV ;
Obmolova, GV ;
Vainshtein, BK ;
Dodson, GG ;
Wilson, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (01) :152-161
[14]  
Ingi T, 1995, J NEUROSCI, V15, P8214
[15]   HEME OXYGENASE-2 - PROPERTIES OF THE HEME COMPLEX OF THE PURIFIED TRYPTIC FRAGMENT OF RECOMBINANT HUMAN HEME OXYGENASE-2 [J].
ISHIKAWA, K ;
TAKEUCHI, N ;
TAKAHASHI, S ;
MATERA, KM ;
SATO, M ;
SHIBAHARA, S ;
ROUSSEAU, DL ;
IKEDASAITO, M ;
YOSHIDA, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) :6345-6350
[16]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119
[18]   Crystal structures of the ferric, ferrous, and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: Catalytic implications [J].
Lad, L ;
Wang, JL ;
Li, HY ;
Friedman, J ;
Bhaskar, B ;
de Montellano, PRO ;
Poulos, TL .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 330 (03) :527-538
[19]   Validation of protein models derived from experiment [J].
Laskowski, RA ;
MacArthur, MW ;
Thornton, JM .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (05) :631-639
[20]   Disruption of an active site hydrogen bond converts human heme oxygenase-1 into a peroxidase [J].
Lightning, LK ;
Huang, H ;
Moënne-Loccoz, P ;
Loehr, TM ;
Schuller, DJ ;
Poulos, TL ;
de Montellano, PRO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (14) :10612-10619