L(1)-contraction and uniqueness for quasilinear elliptic-parabolic equations

被引:197
作者
Otto, F
机构
[1] Inst. Angew. Math. der Univ. Bonn, 53115 Bonn
关键词
D O I
10.1006/jdeq.1996.0155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the L(I)-contraction principle and uniqueness of solutions for quasilinear elliptic-parabolic equations of the form (o) over cap(t)$[b(u)] - div[a(del u, b(u))] + f(b(u)) = 0 in (0, T) x Omega, where b is monotone nondecreasing and continuous. We assume only that rr is a weak solution of finite-energy. In particular, we do not suppose that the distributional derivative (o) over cap(t)$[b(u)] is a bounded Borer measure or a locally integrable function. (C) 1996 Academic Press, Inc.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 25 条
[1]   ON NONSTATIONARY FLOW THROUGH POROUS-MEDIA [J].
ALT, HW ;
LUCKHAUS, S ;
VISINTIN, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1984, 136 :303-316
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
AMIRAT Y., 1991, RAIRO Mode'\l. Math. Anal. Nume'\r., V25, P273, DOI [10.1051/m2an/1991250302731, DOI 10.1051/M2AN/1991250302731]
[4]  
[Anonymous], 1970, MATH USSR SB
[5]  
BREZIS H, 1979, J MATH PURE APPL, V58, P153
[6]   ON THE UNIQUENESS OF THE SOLUTION OF THE EVOLUTION DAM PROBLEM [J].
CARRILLO, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (05) :573-607
[7]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[8]   TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION [J].
DEPABLO, A ;
VAZQUEZ, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :19-61
[9]  
GAGNEUX G, 1994, CR ACAD SCI I-MATH, V318, P919
[10]  
Gilding B.H., 1977, ANN SCUOLA NORM SU S, V4, P393