Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel

被引:148
作者
Zhu, Xun [1 ]
Sui, P. C. [2 ,3 ]
Djilali, Ned [2 ,3 ]
机构
[1] Chongqing Univ, Inst Engn Thermophys, Chongqing 400044, Peoples R China
[2] Univ Victoria, Inst Integrated Energy Syst, Victoria, BC V8W 3P6, Canada
[3] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
基金
中国国家自然科学基金;
关键词
water droplet dynamics; hydrophobic; surface tension; fuel cell; gas diffusion layer; water management;
D O I
10.1016/j.jpowsour.2007.07.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical investigation of the dynamic behaviour of liquid water entering a polymer electrolyte membrane fuel cell (PEMFC) channel through a GDL pore is reported. Two-dimensional, transient simulations employing the volume of fluid (VOF) method are performed to explicitly track the liquid-gas interface, and to gain understanding into the dynamics of a water droplet subjected to air flow in the bulk of the gas channel. The modeled domain consists of a straight channel with air flowing from one side and water entering the domain from a pore at the bottom wall of the channel. The channel dimensions, flow conditions and surface properties are chosen to be representative of typical conditions in a PEMFC. A series of parametric studies, including the effects of channel size, pore size, and the coalescence of droplets are performed with a particular focus on the effect of geometrical structure. The simulation results and analysis of the time evolution of flow patterns show that the height of the channel as well as the width of the pore have significant impacts on the deformation and detachment of the water droplet. Simulations performed for droplets emerging from two pores with the same size into the channel show that coalescence of two water droplets can accelerate the deformation rate and motion of the droplets in the microchannel. Accounting for the initial connection of a droplet to a pore was found to yield critical air inlet velocities for droplet detachment that are significantly different from previous studies that considered an initially stagnant droplet sitting on the surface. The predicted critical air velocity is found to be sensitive to the geometry of the pore, with higher values obtained when the curvature associated with the GDL fibres is taken into account. The critical velocity is also found to decrease with increasing droplet size and decreasing GDL pore diameter. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 37 条
[1]  
[Anonymous], FLUENT 6 2 USERS GUI
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers [J].
Bazylak, A. ;
Sinton, D. ;
Liu, Z. -S. ;
Djilali, N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :784-792
[4]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[5]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[6]   Wall effects in flow past a circular cylinder in a plane channel: a numerical study [J].
Chakraborty, J ;
Verma, N ;
Chhabra, RP .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2004, 43 (12) :1529-1537
[7]   Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface [J].
Chen, KS ;
Hickner, MA ;
Noble, DR .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (12) :1113-1132
[8]   In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy [J].
Feindel, KW ;
LaRocque, LPA ;
Starke, D ;
Bergens, SH ;
Wasylishen, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (37) :11436-11437
[9]   Transport phenomena in polymer electrolyte membranes - I. Modeling framework [J].
Fimrite, J ;
Struchtrup, H ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1804-A1814
[10]   A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding [J].
Hakenjos, A ;
Muenter, H ;
Wittstadt, U ;
Hebling, C .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :213-216