A Hybrid Organic/Inorganic Ionomer from the Copolymerization of Vinylphosphonic Acid and Zirconium Vinylphosphonate

被引:26
作者
Schlichting, Gregory J. [1 ]
Horan, James L. [1 ]
Jessop, Jeri D. [1 ]
Nelson, Sarah E. [1 ]
Seifert, Soenke [3 ]
Yang, Yuan [2 ]
Herring, Andrew M. [1 ]
机构
[1] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA
[3] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
POLYMER ELECTROLYTE MEMBRANES; PROTON-EXCHANGE MEMBRANES; PEM FUEL-CELLS; HIGH-TEMPERATURE; COMPOSITE MEMBRANES; PHOSPHONIC ACID; INTERMEDIATE TEMPERATURE; RELATIVE-HUMIDITY; PROTOGENIC GROUP; CO TOLERANCE;
D O I
10.1021/ma300196y
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Copolymers of vinylphosphonic acid with zirconium vinylphosphonate have been synthesized via free radical polymerization from immiscible mixtures into amorphous, transparent, water stable, and flexible membranes. Ion exchange capacities range from 6 to 10 mequiv/g, corresponding to equivalent weights well below 200 g/mol. A 20 wt % loading of the vinyl zirconium phosphonate comonomer is XRD amorphous. It is shown that 1.5 of the 2 protons in the beginning acidic groups are dissociated in the 20 wt % VZP loaded ionomer, allowing these materials to have high proton conductivities, up to and exceeding 0.1 S cm(-1) at 80 degrees C and 80% RH. Water uptake measurements show very little swelling of the material below 70% RH land ca. 1 water per proton at low RH. Proton conductivity under dry conditions, roughly 0.05 S cm-1 with a lambda < 1, indicates that he material conducts protons under limiting hydration conditions and strongly implicates transport by a pure Grotthuss mechanism.
引用
收藏
页码:3874 / 3882
页数:9
相关论文
共 59 条
[31]  
Lee Y.J., 2007, J PHYS CHEM B, V111, P9711
[32]   Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C [J].
Li, QF ;
He, RH ;
Jensen, JO ;
Bjerrum, NJ .
CHEMISTRY OF MATERIALS, 2003, 15 (26) :4896-4915
[33]  
Li Q, 2008, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TEXTILE MATERIALS & MANUFACTURING TECHNOLOGY, P188
[34]   Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells [J].
Ma, YL ;
Wainright, JS ;
Litt, MH ;
Savinell, RF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A8-A16
[35]   Structure and energetics of the hydronium hydration shells [J].
Markovitch, Omer ;
Agmon, Noam .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (12) :2253-2256
[36]  
Meng FQ, 2005, ABSTR PAP AM CHEM S, V230, pU1627
[37]   Synthesis of vinylphosphonic acid anhydrides and their copolymerization with vinylphosphonic acid [J].
Millaruelo, Martha ;
Steinert, Volker ;
Komber, Hartmut ;
Klopsch, Rainer ;
Voit, Brigitte .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2008, 209 (04) :366-374
[38]  
Nakajima H., 2002, PROTON CONDUCTING HY, P607
[39]   Performance data of a proton exchange membrane fuel cell using H-2/CO as fuel gas [J].
Oetjen, HF ;
Schmidt, VM ;
Stimming, U ;
Trila, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3838-3842
[40]   Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state [J].
Parvole, Julien ;
Jannasch, Patric .
MACROMOLECULES, 2008, 41 (11) :3893-3903