Hydrogen atom in N dimensions

被引:44
作者
Al-Jaber, SM [1 ]
机构
[1] An Najah N Univ, Dept Phys, Nablus, W Bank, Israel
关键词
D O I
10.1023/A:1026679921970
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some aspects of the N-dimensional hydrogen atom are discussed. The complete solution for the energy eigenfunctions is presented and the radial distribution function is examined. Degeneracy of energy levels, expectation Values ([1/r] and [1/r(2)]), and the virial theorem are considered. It is shown that the effect of the effective potential manifests itself in some of the aspects being investigated.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 12 条
[1]  
AlJaber SM, 1997, NUOVO CIM B, V112, P761
[2]   QUANTIZATION OF ANGULAR-MOMENTUM IN THE N-DIMENSIONAL SPACE [J].
ALJABER, SM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (08) :993-995
[3]   RANDOM-WALKS IN NONINTEGER DIMENSION [J].
BENDER, CM ;
BOETTCHER, S ;
MEAD, LR .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) :368-388
[4]   D-DIMENSIONAL MOMENTS OF INERTIA [J].
BENDER, CM ;
MEAD, LR .
AMERICAN JOURNAL OF PHYSICS, 1995, 63 (11) :1011-1014
[5]  
Bransden B. H., 1989, INTRO QUANTUM MECH
[6]  
CRIFFITHS DJ, 1995, INTRO QUANTUM MECH
[7]   PATH INTEGRATION ON SPHERES - HAMILTONIAN OPERATORS FROM THE FADDEEV-SENJANOVIC PATH INTEGRAL FORMULA [J].
FUKUTAKA, H ;
KASHIWA, T .
ANNALS OF PHYSICS, 1987, 176 (02) :301-329
[8]   HOW TO SOLVE PATH-INTEGRALS IN QUANTUM-MECHANICS [J].
GROSCHE, C ;
STEINER, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2354-2385
[9]   MULTIDIMENSIONAL EXTENSION OF A WENTZEL-KRAMERS-BRILLOUIN IMPROVEMENT FOR SPHERICAL QUANTUM BILLIARD ZETA-FUNCTIONS [J].
ROMEO, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4005-4011
[10]  
Shimakura N., 1992, Partial differential operators of elliptic type, DOI DOI 10.1090/MMONO/099