Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers

被引:24
作者
Huang, Hung-Lin [1 ]
Lee, Ching-Ting [2 ]
Lee, Hsin-Ying [1 ]
机构
[1] Natl Cheng Kung Univ, Adv Optoelect Technol Ctr, Res Ctr Energy Technol & Strategy, Dept Photon, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Adv Optoelect Technol Ctr, Res Ctr Energy Technol & Strategy, Inst Microelect,Dept Elect Engn, Tainan 701, Taiwan
关键词
Extra P3HT interfacial layer; Extra PCBM interfacial layer; Inverted polymer solar cells; Non-continuous pathways; CONVERSION EFFICIENCY; PHASE-SEPARATION; SURFACE; ENERGY; FILM;
D O I
10.1016/j.orgel.2015.03.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel P3HT:PCBM inverted polymer solar cell (IPSC) was fabricated and investigated. An extra PCBM and an extra P3HT interfacial layers were inserted into the bottom side and the top side of the P3HT:PCBM absorption layer of the IPSCs to respectively enhance electron transport and hole transport to the corresponding electrodes. According to the surface energy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) measurement results, the extra PCBM interfacial layer could let more P3HT to form on the top side of the P3HT:PCBM blends. It revealed that the non-continuous pathways of P3HT in the P3HT:PCBM absorption layer could be reduced. Consequently, the carrier recombination centers were reduced in the absorption layer of IPSCs. The power conversion efficiency (PCE) of the P3HT:PCBM IPSCs with an extra PCBM interfacial layer greatly increased from 3.39% to 4.50% in comparison to the P3HT:PCBM IPSCs without an extra PCBM interfacial layer. Moreover, the performance of the P3HT:PCBM IPSCs with an extra PCBM interfacial layer could be improved by inserting an extra P3HT interfacial layer between the absorption layer and the MoO3 layer. The PCE of the resulting IPSCs increased from 4.50% to 4.97%. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 26 条
[21]   Performance enhancement of III-V compound multijunction solar cell incorporating transparent electrode and surface treatment [J].
Tseng, Chun-Yen ;
Lee, Choon-Kok ;
Lee, Ching-Ting .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (04) :436-441
[22]   Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells [J].
Xu, Zheng ;
Chen, Li-Min ;
Yang, Guanwen ;
Huang, Chun-Hao ;
Hou, Jianhui ;
Wu, Yue ;
Li, Gang ;
Hsu, Chain-Shu ;
Yang, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (08) :1227-1234
[23]   Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure [J].
Yang, Tingbin ;
Cai, Wanzhu ;
Qin, Donghuan ;
Wang, Ergang ;
Lan, Linfeng ;
Gong, Xiong ;
Peng, Junbiao ;
Cao, Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6849-6853
[24]   Nanoscale morphology of high-performance polymer solar cells [J].
Yang, XN ;
Loos, J ;
Veenstra, SC ;
Verhees, WJH ;
Wienk, MM ;
Kroon, JM ;
Michels, MAJ ;
Janssen, RAJ .
NANO LETTERS, 2005, 5 (04) :579-583
[25]   Recent development of the inverted configuration organic solar cells [J].
Zhang, Fujun ;
Xu, Xiaowei ;
Tang, Weihua ;
Zhang, Jian ;
Zhuo, Zuliang ;
Wang, Jian ;
Wang, Jin ;
Xu, Zheng ;
Wang, Yongsheng .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (07) :1785-1799
[26]   Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride [J].
Zhang, Lipei ;
Xing, Xing ;
Zheng, Lingling ;
Chen, Zhijian ;
Xiao, Lixin ;
Qu, Bo ;
Gong, Qihuang .
SCIENTIFIC REPORTS, 2014, 4