Dynamic latent trait models for multidimensional longitudinal data

被引:97
作者
Dunson, DB [1 ]
机构
[1] Natl Inst Environm Hlth Sci, Biostat Branch, Res Triangle Pk, NC 27709 USA
关键词
Bayesian analysis; latent variables; mixed-effects model; multiple discrete and continuous outcomes; multivariate count data; repeated measure; transition model;
D O I
10.1198/016214503000000387
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a new approach for analysis of multidimensional longitudinal data, motivated by studies using an item response battery to measure traits of an individual repeatedly over time. A general modeling framework is proposed that allows mixtures of count, categorical, and continuous response variables. Each response is related to age-specific latent traits through a generalized linear model that accommodates item-specific measurement errors. A transition model allows the latent traits at a given age to depend on observed predictors and on previous latent traits for that individual. Following a Bayesian approach to inference, a Markov chain Monte Carlo algorithm is proposed for posterior computation. The methods are applied to data from a neurotoxicity study of the pesticide methoxychlor, and evidence of a dose-dependent increase in motor activity is presented.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 28 条
[1]  
Agresti A., 1990, Analysis of categorical data
[2]  
[Anonymous], APPL STAT, DOI DOI 10.2307/2347565
[3]  
[Anonymous], P C FUND QUEST STAT
[4]   A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm [J].
Arminger, G .
PSYCHOMETRIKA, 1998, 63 (03) :271-300
[5]  
Arminger G, 1988, LATENT TRAIT LATENT, P51
[6]   The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function [J].
Chapin, RE ;
Harris, MW ;
Davis, BJ ;
Ward, SM ;
Wilson, RE ;
Mauney, MA ;
Lockhart, AC ;
Smialowicz, RJ ;
Moser, VC ;
Burka, LT ;
Collins, BJ ;
Haskins, EA ;
Allen, JD ;
Judd, L ;
Purdie, WA ;
Harris, HL ;
Lee, CA ;
Corniffe, GM .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1997, 40 (01) :138-157
[7]  
Chen M. H., 2000, MONTE CARLO METHODS
[8]   Marginal likelihood from the Gibbs output [J].
Chib, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1313-1321
[9]   Computing Bayes factors by combining simulation and asymptotic approximations [J].
DiCiccio, TJ ;
Kass, RE ;
Raftery, A ;
Wasserman, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :903-915
[10]   Bayesian latent variable models for clustered mixed outcomes [J].
Dunson, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :355-366