Marginal likelihood from the Gibbs output

被引:1011
作者
Chib, S
机构
关键词
Bayes factor; estimation of normalizing constant; finite mixture models; linear regression; Markov chain Monte Carlo; Markov mixture model; multivariate density estimation; numerical standard error; probit regression; reduced conditional density;
D O I
10.2307/2291521
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of Bayes estimation via Gibbs sampling, with or without data augmentation, a simple approach is developed for computing the marginal density of the sample data (marginal likelihood) given parameter draws from the posterior distribution. Consequently, Bayes factors for model comparisons can be routinely computed as a by-product of the simulation. Hitherto, this calculation has proved extremely challenging. Our approach exploits the fact that the marginal density can be expressed as the prior times the likelihood function over the posterior density. This simple identity holds for any parameter value. An estimate of the posterior density is shown to be available if all complete conditional densities used in the Gibbs sampler have closed-form expressions. To improve accuracy, the posterior density is estimated at a high density point, and the numerical standard error of resulting estimate is derived. The ideas are applied to probit regression and finite mixture models.
引用
收藏
页码:1313 / 1321
页数:9
相关论文
共 30 条
[1]   BAYES INFERENCE VIA GIBBS SAMPLING OF AUTOREGRESSIVE TIME-SERIES SUBJECT TO MARKOV MEAN AND VARIANCE SHIFTS [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1993, 11 (01) :1-15
[2]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[3]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[4]   A CANDIDATES FORMULA - A CURIOUS RESULT IN BAYESIAN PREDICTION [J].
BESAG, J .
BIOMETRIKA, 1989, 76 (01) :183-183
[5]  
BrownJr B. W., 1980, BIOSTATISTICS CASEBO
[6]  
CARLIN B, 1993, J R STAT SOC B, V57, P473
[7]   INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER [J].
CARLIN, BP ;
POLSON, NG .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04) :399-405
[8]   BAYES INFERENCE IN THE TOBIT CENSORED REGRESSION-MODEL [J].
CHIB, S .
JOURNAL OF ECONOMETRICS, 1992, 51 (1-2) :79-99
[9]  
CHIB S, 1993, UNPUB J ECONOMETRICS
[10]  
Collett D., 2002, MODELLING BINARY DAT