Marginal likelihood from the Gibbs output

被引:1011
作者
Chib, S
机构
关键词
Bayes factor; estimation of normalizing constant; finite mixture models; linear regression; Markov chain Monte Carlo; Markov mixture model; multivariate density estimation; numerical standard error; probit regression; reduced conditional density;
D O I
10.2307/2291521
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of Bayes estimation via Gibbs sampling, with or without data augmentation, a simple approach is developed for computing the marginal density of the sample data (marginal likelihood) given parameter draws from the posterior distribution. Consequently, Bayes factors for model comparisons can be routinely computed as a by-product of the simulation. Hitherto, this calculation has proved extremely challenging. Our approach exploits the fact that the marginal density can be expressed as the prior times the likelihood function over the posterior density. This simple identity holds for any parameter value. An estimate of the posterior density is shown to be available if all complete conditional densities used in the Gibbs sampler have closed-form expressions. To improve accuracy, the posterior density is estimated at a high density point, and the numerical standard error of resulting estimate is derived. The ideas are applied to probit regression and finite mixture models.
引用
收藏
页码:1313 / 1321
页数:9
相关论文
共 30 条
[21]   PROBES OF LARGE-SCALE STRUCTURE IN THE CORONA BOREALIS REGION [J].
POSTMAN, M ;
HUCHRA, JP ;
GELLER, MJ .
ASTRONOMICAL JOURNAL, 1986, 92 (06) :1238-1247
[22]  
Quandt R.E., 1973, J ECONOMETRICS, V1, P3, DOI [DOI 10.1016/0304-4076(73)90002-X, 10.1016/0304-4076(73)90002-X]
[23]  
RAFTERY AE, 1994, UNPUB HYPOTHESIS TES
[24]   FACILITATING THE GIBBS SAMPLER - THE GIBBS STOPPER AND THE GRIDDY-GIBBS SAMPLER [J].
RITTER, C ;
TANNER, MA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) :861-868
[26]  
Scott D., 1992, MULTIVARIATE DENSITY, DOI 10.1002/9780470316849
[27]   THE CALCULATION OF POSTERIOR DISTRIBUTIONS BY DATA AUGMENTATION [J].
TANNER, MA ;
WING, HW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :528-540
[28]  
TIERNEY L, 1994, ANN STAT, V22, P1701, DOI 10.1214/aos/1176325750
[29]  
West M., 1992, BAYESIAN STATISTICS, V4, P503
[30]   GIBBS SAMPLER CONVERGENCE CRITERIA [J].
ZELLNER, A ;
MIN, CK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) :921-927