Diamond-like carbon as a buffer layer in polymeric electroluminescent device

被引:18
作者
Choi, SH
Jeong, SM
Koo, WH
Jo, SJ
Baik, HK
Lee, SJ
Song, KM
Han, DW
机构
[1] Yonsei Univ, Dept Met Engn, Seoul 120749, South Korea
[2] Kyungsung Univ, Dept Mat Engn, Pusan 608736, South Korea
[3] Konkuk Univ, Dept Appl Phys, Chungju 380701, South Korea
[4] Samsung SDI, Kihung 449900, South Korea
关键词
sputtering; electroluminescent devices; polymers; buffer layer; PLED; diamond like carbon;
D O I
10.1016/j.tsf.2004.12.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond-like carbon (DLC) layer was deposited by the Cs+ ion sputtered negative ion deposition technique between hole transport layer and indium tin oxide (ITO) anode for polymeric electroluminescent device. An acidic poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene):poly-(styrenesulphonic acid) (PEDOT:PSS) solution acting as a hole transporting material etches the ITO surface and the PEDOT:PSS/ITO interface is not stable. X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry have been used to measure the indium contamination in the organic layers such as PEDOT:PSS and poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]. From the result, it was found that the DLC buffer layer protects ITO surface from acidic PEDOT:PSS solution and restrains the indium diffusion into organic layer. The device with the DLC layer also has electroluminescent efficiency by almost 2 times in the polymeric electroluminescent device compared with the device without diamond-like carbon layer. (c) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:351 / 357
页数:7
相关论文
共 14 条
[1]   Formation of polycrystalline silicon films on glass substrates at low-temperatures by a direct negative Si ion beam deposition system [J].
Choi, DJ ;
Kim, YH ;
Han, DW ;
Baik, HK ;
Kim, SI .
JOURNAL OF CRYSTAL GROWTH, 1998, 191 (04) :718-722
[2]   Stabilization of electrode migration in polymer electroluminescent devices [J].
Chua, SJ ;
Ke, L ;
Kumar, RS ;
Zhang, K .
APPLIED PHYSICS LETTERS, 2002, 81 (06) :1119-1121
[3]   Indium diffusion in model polymer light-emitting diodes [J].
de Jong, MP ;
Simons, DPL ;
Reijme, MA ;
van IJzendoorn, LJ ;
van der Gon, AWD ;
de Voigt, MJA ;
Brongersma, HH ;
Gymer, RW .
SYNTHETIC METALS, 2000, 110 (01) :1-6
[4]   Field emission characteristics of cesiated amorphous carbon films by negative carbon ion [J].
Han, DW ;
Kim, YH ;
Choi, DJ ;
Chi, EJ ;
Yoon, WY ;
Baik, HK .
THIN SOLID FILMS, 1999, 355 :199-204
[5]   The effect of solvent on the etching of ITO electrode [J].
Huang, CJ ;
Su, YK ;
Wu, SL .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 84 (01) :146-150
[6]   Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer [J].
Jiang, HJ ;
Zhou, Y ;
Ooi, BS ;
Chen, YW ;
Wee, T ;
Lam, YL ;
Huang, JS ;
Liu, SY .
THIN SOLID FILMS, 2000, 363 (1-2) :25-28
[7]   Improvement of electrode/organic layer interfaces by the insertion of monolayer-like aluminum oxide film [J].
Kurosaka, Y ;
Tada, N ;
Ohmori, Y ;
Yoshino, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (7B) :L872-L875
[8]   Improvement of EL efficiency in polymer light-emitting diodes by heat treatments [J].
Lee, TW ;
Park, OO ;
Do, LM ;
Zyung, T .
SYNTHETIC METALS, 2001, 117 (1-3) :249-251
[9]   Effect of organic layer combination on dark spot formation in organic light emitting devices [J].
Liew, YF ;
Zhu, FR ;
Chua, SJ .
CHEMICAL PHYSICS LETTERS, 2004, 394 (4-6) :275-279
[10]   Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layers [J].
Lu, HT ;
Yokoyama, M .
SOLID-STATE ELECTRONICS, 2003, 47 (08) :1409-1412