Quantum-Merlin-Arthur-complete translationally invariant Hamiltonian problem and the complexity of finding ground-state energies in physical systems

被引:9
作者
Kay, Alastair [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Ctr Quantum Computat, Cambridge CB3 0WA, England
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevA.76.030307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Here we present a problem related to the local Hamiltonian problem (identifying whether the ground-state energy falls within one of two ranges) which is restricted to being translationally invariant. We prove that for Hamiltonians with a fixed local dimension and O(log(N))-body local terms, or local dimension N and two-body terms, there are instances where finding the ground-state energy is quantum-Merlin-Arthur-complete and simulating the dynamics is BQP-complete (BQP denotes "bounded error, quantum polynomial time"). We discuss the implications for the computational complexity of finding ground states of these systems and hence for any classical approximation techniques that one could apply including density-matrix renormalization group, matrix product states, and multiscale entanglement renormalization ansatz. One important example is a one-dimensional lattice of bosons with nearest-neighbor hopping at constant filling fraction-i.e., a generalization of the Bose-Hubbard model.
引用
收藏
页数:4
相关论文
共 20 条
[1]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[2]   Perfect transfer of arbitrary states in quantum spin networks [J].
Christandl, M ;
Datta, N ;
Dorlas, TC ;
Ekert, A ;
Kay, A ;
Landahl, AJ .
PHYSICAL REVIEW A, 2005, 71 (03)
[3]   Perfect state transfer in quantum spin networks [J].
Christandl, M ;
Datta, N ;
Ekert, A ;
Landahl, AJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :187902-1
[4]   Computational difficulty of global variations in the density matrix renormalization group [J].
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[5]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83
[6]   Solving gapped hamiltonians locally [J].
Hastings, MB .
PHYSICAL REVIEW B, 2006, 73 (08)
[7]  
KAY A, ARXIVQUANTPH0702239
[8]  
KAY A, ARXIVQUANTPH0702092, P32710
[9]   The complexity of the local Hamiltonian problem [J].
Kempe, J ;
Kitaev, A ;
Regev, O .
SIAM JOURNAL ON COMPUTING, 2006, 35 (05) :1070-1097
[10]  
Kitaev A, 2002, GRADUATE STUDIES MAT