Bayesian deconvolution of noisy filtered point processes

被引:23
作者
Andrieu, C
Barat, É
Doucet, A
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[2] CEA Technol Avancees DEIN Saclay, LETI, Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian methods; deconvolution; model selection; reversible jump MCMC;
D O I
10.1109/78.890355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection and estimation of filtered point processes using noisy data is an essential requirement in many seismic, ultrasonic, and nuclear applications. In this paper, we address this joint detection/estimation problem using a Bayesian approach, which allows us to easily include any relevant prior information. Performing Bayesian inference for such a complex model is a challenging computational problem as it requires the evaluation of intricate high-dimensional integrals. We develop here an efficient stochastic procedure based on a reversible jump Markov chain Monte Carlo method to solve this problem and prove the geometric convergence of the algorithm. The proposed model and algorithm are demonstrated on an application arising in nuclear science.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 28 条
[21]  
MENGERSEN K, 1998, P 6 VAL BAY STAT M
[22]  
Meyn SP., 1993, MARKOV CHAINS STOCHA, DOI 10.1007/978-1-4471-3267-7
[23]   On Bayesian analysis of mixtures with an unknown number of components [J].
Richardson, S ;
Green, PJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (04) :731-758
[24]   MODELING BY SHORTEST DATA DESCRIPTION [J].
RISSANEN, J .
AUTOMATICA, 1978, 14 (05) :465-471
[25]  
Snyder D., 1991, RANDOM POINT PROCESS
[26]   Channel and intensity estimation for a class of point processes [J].
Swami, A ;
Sadler, B .
8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, :440-443
[27]  
TIERNEY L, 1994, ANN STAT, V22, P1701, DOI 10.1214/aos/1176325750
[28]  
Zellner A., 1986, BAYESIAN INFERENCE D, V6, P233, DOI DOI 10.4236/OJS.2013.34031