Hard-limit induced chaos in a fundamental power system model

被引:61
作者
Ji, W
Venkatasubramanian, V
机构
[1] Sch. of Elec. Eng. and Comp. Science, Washington State University, Pullman
基金
美国国家科学基金会;
关键词
power system dynamics; power system stability; bifurcations; chaos; hard limits;
D O I
10.1016/0142-0615(95)00066-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper investigates complex nonlinear phenomena in a fundamental power system model represented in a single-machine infinite-bus formulation. The generator electromagnetics, electromechanics and its excitation control are modelled together by fourth-order differential equations. It is shown that when excitation control gains are set high (as in common industry practice) and when the excitation hard-limits are taken into account, this representative power system model undergoes global bifurcations including period-doubling cascades which lean to sustained chaotic behaviour. Specifically sustained complex oscillations result from the interaction of hard-limits and the system transients over a large range of realistic parameter values. The emergence of strange attractors is demonstrated in the paper by detailed numerical simulations and preliminary,analysis. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:279 / 295
页数:17
相关论文
共 32 条
  • [11] FINK LH, 1994, P NSF INT WORKSH BUL, V3
  • [12] THE CALCULATION OF LYAPUNOV SPECTRA
    GREENE, JM
    KIM, JS
    [J]. PHYSICA D, 1987, 24 (1-3): : 213 - 225
  • [13] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
  • [14] JI WJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1573
  • [15] JI WJ, 1995, IEEE INT SYMP CIRC S, P1131, DOI 10.1109/ISCAS.1995.521612
  • [16] JIANG X, 1995, P INT S CIRC SYST SE, P146
  • [17] CHAOTIC MOTIONS IN THE 2-DEGREE-OF-FREEDOM SWING EQUATIONS
    KOPELL, N
    WASHBURN, RB
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (11): : 738 - 746
  • [18] Kundur P, 1994, POWER SYSTEM STABILI, V7
  • [19] NAYFEH MA, 1990, NONLINEAR DYNAM, V1, P313, DOI DOI 10.1007/BF01865278
  • [20] RAJGOPALAN C, 1989, P 28 IEEE C DEC CONT, V1, P332