On the distribution of Pickands coordinates in bivariate EV and GP models

被引:5
作者
Falk, M [1 ]
Reiss, RD
机构
[1] Univ Wurzburg, Inst Angewandte Math & Stat, D-97074 Wurzburg, Germany
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
关键词
pickands coordinates; max-stable distribution; bivariate generalized pareto distribution; pickands representation; dependence function; peaks-over-threshold approach (POT); local asymptotic normality (LAN); Hajek-LeCam convolution theorem;
D O I
10.1016/j.jmva.2004.02.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (U, V) be a random vector with U <= 0, V <= 0. The random variables Z = V/(U+ V), C = U + V are the Pickands coordinates of (U, V). They are a useful tool for the investigation of the tail behaviour in bivariate peaks-over-threshold models in extreme value theory. We compute the distribution of (Z, C) among others under the assumption that the distribution function H of (U, V) is in a smooth neighborhood of a generalized Pareto distribution (GP) with uniform marginals. It turns out that if H is a GP, then Z and C are independent, conditional on C > c >= - 1. These results are used to derive approximations of the empirical point process of the exceedances (Z(i), C-i) with C-i > c in an iid sample of size n. Local asymptotic normality is established for the approximating point process in a parametric model, where c = c(n) TO as n -> infinity . (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 295
页数:29
相关论文
共 35 条
[21]   Nonparametric estimation of the dependence function in bivariate extreme value distributions [J].
Jiménez, JR ;
Villa-Diharce, E ;
Flores, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 76 (02) :159-191
[22]  
Kotz S., 2000, Extreme Value Distributions: Theory and Applications
[23]  
Mardia K. V., 1970, FAMILIES BIVARIATE D
[24]  
MAROHN F, 2001, PROB MATH STAT, V21, P71
[25]  
MAROHN F, 1999, STAT DECISIONS, V17, P237
[26]   A MULTIVARIATE EXPONENTIAL DISTRIBUTION [J].
MARSHALL, AW ;
OLKIN, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (317) :30-&
[27]  
Pfanzagl Johann., 1994, PARAMETRIC STAT THEO
[28]  
Pickands J, 1981, P 43 SESS INT STAT I, V49, P859
[29]  
Reiss R. D., 1989, APPROXIMATE DISTRIBU, DOI [/10.1007/978-1-4613-9620-8, DOI 10.1007/978-1-4613-9620-8]
[30]  
REISS RD, 1993, SERIES STAT