Aerosol remote sensing over land:: A comparison of satellite retrievals using different algorithms and instruments

被引:166
作者
Kokhanovsky, A. A.
Breon, F.-M.
Cacciari, A.
Carboni, E.
Diner, D.
Di Nicolantonio, W.
Grainger, R. G.
Grey, W. M. F.
Hoeller, R.
Lee, K.-H.
Li, Z.
North, P. R. J.
Sayer, A. M.
Thomas, G. E.
von Hoyningen-Huene, W.
机构
[1] Inst environm Phys, D-28334 Bremen, Germany
[2] CEA, DSM, LSCE, ALb Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] CNR, ISAC, Inst Atmospher & Climat Sci, I-40129 Bologna, Italy
[4] Clarendon Lab, Oxford OX1 3PU, England
[5] CALTECH, JPL, Pasadena, CA 91109 USA
[6] Swansea Univ, Sch Environm & Soc, Climate & Land Surface Syst Interact Ctr, Swansea SA2 8PP, W Glam, Wales
[7] Fed Environm Agcy, A-1190 Vienna, Austria
[8] Univ Maryland, Earth Syst Sci Interdiscplinary Ctr, College Pk, MD 20742 USA
基金
英国自然环境研究理事会;
关键词
satellite remote sensing; atmospheric optics; aerosols;
D O I
10.1016/j.atmosres.2007.02.008
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An inter-comparison study of the aerosol optical thickness (AOT) at 0.55 mu m retrieved using different satellite instruments and algorithms based on the analysis of backscattered solar light is presented for a single scene over central Europe on October 13th, 2005. For the first time comparisons have been performed for as many as six instruments on multiple satellite platforms. Ten different algorithms are briefly discussed and inter-compared. It was found that on the scale of a single pixel there can be large differences in AOT retrieved over land using different retrieval techniques and instruments. However, these differences are not as pronounced for the average AOT over land. For instance, the average AOT at 0.55 mu m for the area 7-12E, 49-53N was equal to 0.14 for MISR, NASA MODIS and POLDER algorithms. It is smaller by 0.01 for the ESA MERIS aerosol product and larger by 0.04 for the MERIS BAER algorithm. AOT as derived using AATSR gives on average larger values as compared to all other instruments, while SCIAMACHY retrievals underestimate the aerosol loading. These discrepancies are explained by uncertainties in a priori assumptions used in the different algorithms and differences in the sensor characteristics. Validation against AERONET shows that MERIS provides the most accurate AOT retrievals for this scene. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:372 / 394
页数:23
相关论文
共 57 条
[51]  
THOMAS GE, 2005, ATSR2AATSR
[52]   Regional distribution of aerosol over land, derived from ATSR-2 and GOME [J].
Veefkind, JP ;
de Leeuw, G ;
Stammes, P ;
Koelemeijer, RBA .
REMOTE SENSING OF ENVIRONMENT, 2000, 74 (03) :377-386
[53]   Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX [J].
Veefkind, JP ;
de Leeuw, G ;
Durkee, PA .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (16) :3135-3138
[54]   Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview [J].
Vermote, EF ;
Tanre, D ;
Deuze, JL ;
Herman, M ;
Morcrette, JJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (03) :675-686
[55]   Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance [J].
von Hoyningen-Huene, W ;
Freitag, M ;
Burrows, JB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[56]  
WISCOMBE WJ, 1977, J ATMOS SCI, V34, P1408, DOI 10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO
[57]  
2